login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers whose sum of digits is a refactorable number.
1

%I #44 Aug 23 2022 10:09:50

%S 1,2,8,9,10,11,17,18,20,26,27,35,36,39,44,45,48,53,54,57,62,63,66,71,

%T 72,75,80,81,84,90,93,99,100,101,107,108,110,116,117,125,126,129,134,

%U 135,138,143,144,147,152,153,156,161,162,165,170,171,174,180,183,189,192,198,200

%N Numbers whose sum of digits is a refactorable number.

%C Also numbers k such that A007953(k) = c * A000005(A007953(k)); c >= 1 is a positive integer. For c = 1 see A356520.

%e k = 17; A007953(17) = 2 * A000005(A007953(17)), thus k = 17 is in the sequence.

%p filter:= proc(n) local s; s:= convert(convert(n,base,10),`+`); s mod numtheory:-tau(s) = 0 end proc:

%p select(filter, [$1..200]); # _Robert Israel_, Aug 10 2022

%t refQ[n_] := Divisible[n, DivisorSigma[0,n]]; Select[Range[2000], refQ[Plus @@ IntegerDigits[#]] &] (* _Amiram Eldar_, Aug 10 2022 *)

%o (Python)

%o from sympy import divisor_count

%o def ok(n): sd = sum(map(int, str(n))); return sd%divisor_count(sd) == 0

%o print([k for k in range(1, 200) if ok(k)]) # _Michael S. Branicky_, Aug 10 2022

%o (PARI) isok(k) = my(s=sumdigits(k)); denominator(s/numdiv(s)) == 1; \\ _Michel Marcus_, Aug 10 2022

%Y Cf. A000005, A033950, A007953, A306509, A356520.

%K nonn,base,easy

%O 1,2

%A _Ctibor O. Zizka_, Aug 10 2022