The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A355972 Denominator of the cross-ratio of the four primes p_n, p_{n+1}, p_{n+2}, p_{n+3}, where p_n = prime(n). 1

%I #41 Nov 26 2022 15:51:12

%S 5,2,8,5,8,5,4,9,7,9,4,5,4,4,7,7,9,4,1,9,16,27,6,7,5,8,5,20,77,8,9,3,

%T 35,3,7,4,16,4,7,3,35,4,8,3,13,7,3,5,4,9,3,15,11,3,7,7,9,4,4,65,49,20,

%U 5,20,14,9,15,4,4,27,40,5,4,16,27,6,5,22,25,11,35,3,9,16,27,6,7,5,3,9,4,5,8,3,11,20

%N Denominator of the cross-ratio of the four primes p_n, p_{n+1}, p_{n+2}, p_{n+3}, where p_n = prime(n).

%F a(n) = denominator of ((p_n-p_(n+2))/(p_n-p_(n+3))) * ((p_(n+1)-p_(n+3))/(p_(n+1)-p_(n+2))) where p_n = prime(n) is the n-th prime.

%e 6/5, 3/2, 9/8, 9/5, 9/8, 9/5, 5/4, 10/9, 16/7, 10/9 are the first ten terms in the sequence of cross-ratios.

%t dcr[{a_,b_,c_,d_}]:=Denominator[(a-c)/(a-d) (b-d)/(b-c)]; dcr/@Partition[Prime[ Range[ 100]],4,1] (* _Harvey P. Dale_, Nov 26 2022 *)

%o (PARI) a(n) = my(p=prime(n), p1=nextprime(p+1), p2=nextprime(p1+1), p3=nextprime(p2+1)); denominator((((p-p2)/(p-p3))*((p1-p3)/(p1-p2)))); \\ _Michel Marcus_, Jul 29 2022

%Y Cf. A355971 (numerators).

%Y Cf. A000040.

%K nonn,frac

%O 1,1

%A _Samir Fridhi_, Jul 21 2022

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 24 02:58 EST 2024. Contains 370288 sequences. (Running on oeis4.)