Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 May 13 2024 00:06:24
%S 13,19,2207,26041,332698495781
%N Primes p such that (p+9)^(p-1) == 1 (mod p^2).
%C a(6) > 10^13 if it exists. - _Jason Yuen_, May 12 2024
%o (PARI) forprime(p=1, , if(Mod(p+9, p^2)^(p-1)==1, print1(p, ", ")))
%Y (p+k)^(p-1) == 1 (mod p^2): A355959 (k=2), A355960 (k=5), A355961 (k=6), A355962 (k=7), A355963 (k=8), A355965 (k=10).
%K nonn,hard,more
%O 1,1
%A _Felix Fröhlich_, Jul 21 2022
%E a(5) from _Jason Yuen_, May 12 2024