login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = sigma(n) / gcd(sigma(n), sigma(A003961(n))), where A003961 is fully multiplicative with a(p) = nextprime(p), and sigma is the sum of divisors function.
5

%I #12 Jul 23 2022 09:56:18

%S 1,3,2,7,3,1,2,3,13,9,6,14,7,1,1,31,9,39,5,21,4,9,4,1,31,7,10,14,15,3,

%T 16,9,4,27,1,7,19,5,14,9,21,1,11,6,39,3,8,62,3,31,3,49,9,5,9,1,5,45,

%U 30,7,31,12,26,127,7,3,17,63,8,3,36,39,37,19,62,35,4,7,20,93,11,63,14,28,27,11,5,9,45,117

%N a(n) = sigma(n) / gcd(sigma(n), sigma(A003961(n))), where A003961 is fully multiplicative with a(p) = nextprime(p), and sigma is the sum of divisors function.

%C Denominator of ratio A003973(n) / A000203(n). See comments in A355933.

%H Antti Karttunen, <a href="/A355934/b355934.txt">Table of n, a(n) for n = 1..20000</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%F a(n) = A000203(n) / A355932(n) = A000203(n) / gcd(A000203(n), A003973(n)).

%t f[p_, e_] := ((q = NextPrime[p])^(e + 1) - 1)/(q - 1); a[1] = 1; a[n_] := Denominator[Times @@ f @@@ FactorInteger[n] / DivisorSigma[1, n]]; Array[a, 100] (* _Amiram Eldar_, Jul 22 2022 *)

%o (PARI)

%o A003973(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); sigma(factorback(f)); };

%o A355934(n) = { my(u=sigma(n)); (u/gcd(A003973(n), u)); };

%Y Cf. A000203, A003961, A003973, A355932, A355933 (numerators), A355940, A355941 (positions of 1's).

%Y Cf. also A336849, A349162.

%K nonn,frac

%O 1,2

%A _Antti Karttunen_, Jul 22 2022