login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = gcd(sigma(n), sigma(A003961(n))), where A003961 is fully multiplicative with a(p) = nextprime(p).
4

%I #12 Jul 23 2022 09:56:07

%S 1,1,2,1,2,12,4,5,1,2,2,2,2,24,24,1,2,1,4,2,8,4,6,60,1,6,4,4,2,24,2,7,

%T 12,2,48,13,2,12,4,10,2,96,4,14,2,24,6,2,19,3,24,2,6,24,8,120,16,2,2,

%U 24,2,8,4,1,12,48,4,2,12,48,2,5,2,6,2,4,24,24,4,2,11,2,6,8,4,12,24,20,2,2,8,6,4,72,24

%N a(n) = gcd(sigma(n), sigma(A003961(n))), where A003961 is fully multiplicative with a(p) = nextprime(p).

%H Antti Karttunen, <a href="/A355932/b355932.txt">Table of n, a(n) for n = 1..10000</a>

%H Antti Karttunen, <a href="/A355932/a355932.txt">Data supplement: n, a(n) computed for n = 1..100000</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%F a(n) = gcd(A000203(n), A003973(n)).

%F a(n) = A003973(n) / A355933(n).

%F a(n) = A000203(n) / A355934(n).

%t f[p_, e_] := ((q = NextPrime[p])^(e + 1) - 1)/(q - 1); a[1] = 1; a[n_] := GCD[DivisorSigma[1, n], Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* _Amiram Eldar_, Jul 22 2022 *)

%o (PARI)

%o A003973(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); sigma(factorback(f)); };

%o A355932(n) = gcd(sigma(n), A003973(n));

%Y Cf. A000203, A003961, A003973, A355933, A355934.

%Y Cf. also A336850, A342671.

%K nonn

%O 1,3

%A _Antti Karttunen_, Jul 22 2022