login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Lexicographically earliest infinite sequence such that a(i) = a(j) => A348717(i) = A348717(j) and A355442(i) = A355442(j) for all i, j >= 1.
5

%I #17 Jul 28 2022 09:17:52

%S 1,2,3,4,3,5,3,6,7,8,3,9,3,10,5,11,3,12,3,13,14,15,3,16,17,18,19,20,3,

%T 21,3,22,23,24,25,26,3,27,28,29,3,30,3,31,32,33,3,34,17,35,36,37,3,38,

%U 39,40,41,42,3,43,3,44,45,46,47,48,3,49,50,51,3,52,3,53,54,55,56,57,3,58,59,60,3,61,62,63,64,65,3,66,67,68,69,70,71,72,3,73,74

%N Lexicographically earliest infinite sequence such that a(i) = a(j) => A348717(i) = A348717(j) and A355442(i) = A355442(j) for all i, j >= 1.

%C Restricted growth sequence transform of the ordered pair [A348717(n), A355442(n)].

%C For all i, j: a(i) = a(j) => A355836(i) = A355836(j).

%C Terms that occur in positions given by A355822 may occur only a finite number of times in this sequence. Most of these seem to be in the singular equivalence classes, i.e., have unique values, apart from exceptions like pairs {6, 15}, {273, 1729}, (see the examples and the array A355926). In a coarser variant A355836 multiple such finite equivalence classes may coalesce together into several infinite equivalence classes.

%H Antti Karttunen, <a href="/A355835/b355835.txt">Table of n, a(n) for n = 1..100000</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%H <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>

%e a(6) = a(15) [= 5 as allotted by the rgs-transform] because 15 = A003961(6) [i.e., 15 is in the same column in prime shift array A246278 as 6 is], and because A355442(6) = A355442(15) = 5.

%e a(138) = a(435) [= 103 as allotted by the rgs-transform] because 435 = A003961(138), and A355442(138) = A355442(435) = 5.

%e a(273) = a(1729) [= 205 as allotted by the rgs-transform] because 1729 = A003961(A003961(273)) [i.e., 273 and 1729 are in the same column of A246278], and A355442(273) = A355442(1729) = 11.

%o (PARI)

%o up_to = 65537;

%o rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };

%o A348717(n) = if(1==n, 1, my(f = factor(n), k = primepi(f[1, 1])-1); for (i=1, #f~, f[i, 1] = prime(primepi(f[i, 1])-k)); factorback(f));

%o A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };

%o A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };

%o A355442(n) = gcd(A003961(n), A276086(n));

%o Aux355835(n) = [A348717(n), A355442(n)];

%o v355835 = rgs_transform(vector(up_to,n,Aux355835(n)));

%o A355835(n) = v355835[n];

%Y Cf. A003961, A276086, A348717, A355442, A355821, A355822, A355926.

%Y Cf. also A246278, A305801, A355833, A355834.

%K nonn

%O 1,2

%A _Antti Karttunen_, Jul 20 2022