login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Dirichlet inverse of A355825, characteristic function of exponentially odious numbers.
5

%I #12 Jul 20 2022 08:50:30

%S 1,-1,-1,0,-1,1,-1,1,0,1,-1,0,-1,1,1,-2,-1,0,-1,0,1,1,-1,-1,0,1,1,0,

%T -1,-1,-1,2,1,1,1,0,-1,1,1,-1,-1,-1,-1,0,0,1,-1,2,0,0,1,0,-1,-1,1,-1,

%U 1,1,-1,0,-1,1,0,0,1,-1,-1,0,1,-1,-1,0,-1,1,0,0,1,-1,-1,2,-2,1,-1,0,1,1,1,-1,-1,0,1,0,1,1,1,-2,-1,0,0,0,-1,-1,-1,-1,-1,1,-1,0,-1,-1,1,2,-1,-1,1,0,0,1,1,1,0,1,1,0,1,0,-1,-4

%N Dirichlet inverse of A355825, characteristic function of exponentially odious numbers.

%C Multiplicative because A355825 is.

%H Antti Karttunen, <a href="/A355826/b355826.txt">Table of n, a(n) for n = 1..100000</a>

%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>

%F a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A355825(n/d) * a(d).

%t s[n_] := If[AllTrue[FactorInteger[n][[;; , 2]], OddQ[DigitCount[#, 2, 1]] &], 1, 0]; a[1] = 1; a[n_] := a[n] = -DivisorSum[n, s[n/#]*a[#] &, # < n &]; Array[a, 100] (* _Amiram Eldar_, Jul 19 2022 *)

%o (PARI)

%o A355825(n) = factorback(apply(e->(hammingweight(e)%2),factor(n)[,2]));

%o memoA355826 = Map();

%o A355826(n) = if(1==n,1,my(v); if(mapisdefined(memoA355826,n,&v), v, v = -sumdiv(n,d,if(d<n,A355825(n/d)*A355826(d),0)); mapput(memoA355826,n,v); (v)));

%Y Cf. A270428, A355825.

%Y Differs from related A355824 for the first time at n=128, where a(128) = -4, while A355824(128) = -3.

%Y Cf. also A355819.

%K sign,mult

%O 1,16

%A _Antti Karttunen_, Jul 19 2022