login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355775
Expansion of 1 + f/(1 + 2*f), where f is the g.f. of the swinging factorial (A056040).
0
1, 1, 0, 2, -10, 30, -84, 244, -722, 2126, -6252, 18364, -53988, 158668, -466408, 1370792, -4029154, 11842222, -34806972, 102303468, -300690348, 883782404, -2597604952, 7634834648, -22440207764, 65955900268, -193856647736, 569780485080, -1674690451976
OFFSET
0,4
FORMULA
a(n) = [z^n] (1 + ((1 - 4*z^2)^(3/2) + 4*z^2 - z - 1) / ((1 - 4*z^2)^(3/2) + 2*(4*z^2 - z - 1))).
Let u = 1 - 4*z^2, v = u + z and w = u^(3/2) - v. Then the g.f. can be written as 1 + w/(w - v) and the g.f. of the swinging factorial 1 - w/(w + v).
MAPLE
# Traditional style:
u := 1 - 4*z^2: v := u + z: w := u^(3/2) - v: 1 + w/(w - v):
ser := series(%, z, 30): seq(coeff(%, z, n), n = 0..28);
# Alternative (Alois P. Heinz style, see A355488):
c := n -> n! / iquo(n, 2)!^2:
a := n -> (f -> coeff(series(1 + f/(1 + 2*f), x, n+1), x, n))(add(c(j)*x^j, j=1..n)): seq(a(n), n = 0..28);
PROG
(SageMath)
def sw_factorial(n): return factorial(n) // factorial(n // 2)^2
A = QQ[['t']]
f = A([0] + [sw_factorial(n) for n in range(1, 29)]).O(29)
print(list(1 + f / (1 + 2 * f))) # After F. Chapoton in A355488.
CROSSREFS
Sequence in context: A120546 A058966 A058967 * A234471 A196317 A318579
KEYWORD
sign
AUTHOR
Peter Luschny, Jul 22 2022
STATUS
approved