%I #5 Jul 19 2022 08:03:43
%S 1,1,2,1,2,1,3,1,3,1,2,1,4,1,2,1,2,1,4,1,3,1,3,1,3,1,4,1,4,1,2,1,2,1,
%T 3,1,6,1,3,1,2,1,4,1,3,1,4,1,6,1,2,1,5,1,2,1,3,1,2,1,6,1,4,1,4,1,2,1,
%U 2,1,6,1,4,1,2,1,3,1,4,1,5,1,2,1,2,1,3
%N Number of ways to choose a weakly decreasing sequence of divisors, one of each prime index of n (with multiplicity, taken in weakly increasing order).
%C A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Cartesian_product">Cartesian product</a>.
%e The a(2) = 1 through a(19) = 4 choices:
%e 1 1 11 1 11 1 111 11 11 1 111 1 11 11 1111 1 111 1
%e 2 3 2 21 5 2 21 7 2
%e 4 22 3 4
%e 6 8
%t Table[Length[Select[Tuples[Divisors/@primeMS[n]], GreaterEqual@@#&]],{n,100}]
%Y Allowing any choice of divisors gives A355731, firsts A355732.
%Y Choosing a multiset instead of sequence gives A355733, firsts A355734.
%Y The reverse version is A355735, firsts A355736, only primes A355745.
%Y A000005 counts divisors.
%Y A001414 adds up distinct prime divisors, counted by A001221.
%Y A003963 multiplies together the prime indices of n.
%Y A056239 adds up prime indices, row sums of A112798, counted by A001222.
%Y A061395 selects the maximum prime index.
%Y Cf. A000720, A076610, A120383, A316524, A324850, A355737, A355739, A355740, A355741, A355742, A355744.
%K nonn
%O 1,3
%A _Gus Wiseman_, Jul 18 2022