Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jul 18 2022 16:39:17
%S 1,-3,-1,0,-1,1,-1,24,-4,3,-1,16,-1,3,-3,-72,-1,6,-1,6,-3,3,-1,-68,0,
%T 3,-116,0,-1,21,-1,24,1,3,-5,72,-1,3,-3,-120,-1,23,-1,6,-158,3,-1,28,
%U 0,-18,-3,0,-1,632,-5,-24,-3,3,-1,-54,-1,3,16,504,-5,-1,-1,6,-3,15,-1,-400,-1,3,-236,0,1,23,-1,474,136
%N Dirichlet inverse of A355442, gcd(A003961(n), A276086(n)), where A003961 is fully multiplicative with a(p) = nextprime(p), and A276086 is primorial base exp-function.
%H Antti Karttunen, <a href="/A355692/b355692.txt">Table of n, a(n) for n = 1..11550</a>
%H Antti Karttunen, <a href="/A355692/a355692.txt">Data supplement: n, a(n) computed for n = 1..65537</a>
%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>
%F a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A355442(n/d) * a(d).
%o (PARI)
%o A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
%o A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
%o A355442(n) = gcd(A003961(n), A276086(n));
%o memoA355692 = Map();
%o A355692(n) = if(1==n,1,my(v); if(mapisdefined(memoA355692,n,&v), v, v = -sumdiv(n,d,if(d<n,A355442(n/d)*A355692(d),0)); mapput(memoA355692,n,v); (v)));
%Y Cf. A003961, A276086.
%Y Cf. also A346242, A354347, A354348, A354823, A354824.
%K sign
%O 1,2
%A _Antti Karttunen_, Jul 18 2022