Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Jul 14 2022 09:35:26
%S 0,0,0,0,1,0,0,2,2,0,0,3,9,3,0,0,4,12,12,4,0,0,5,35,15,35,5,0,0,6,38,
%T 48,48,38,6,0,0,7,49,51,271,51,49,7,0,0,8,56,60,284,284,60,56,8,0,0,9,
%U 135,63,387,313,387,63,135,9,0,0,10,142,192,448,398,398,448,192,142,10,0
%N Square array A(n, k), n, k >= 0, read by antidiagonals; for any number n with runs in binary expansion (r_w, ..., r_0), let p(n) be the polynomial of a single indeterminate x where the coefficient of x^e is r_e for e = 0..w and otherwise 0, and let q be the inverse of p; A(n, k) = q(p(n) * p(k)).
%C In other words, A(n, k) encodes the product of the polynomials encoded by n and k.
%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%F A(n, k) = A(k, n).
%F A(n, 0) = 0.
%F A(n, 1) = n.
%F A(n, 3) = A001196(n).
%F A(n, 7) = A097254(n+1).
%F A(n, n) = A355654(n).
%e Array A(n, k) begins:
%e n\k| 0 1 2 3 4 5 6 7 8 9 10 11
%e ---+---------------------------------------------------------------------
%e 0| 0 0 0 0 0 0 0 0 0 0 0 0
%e 1| 0 1 2 3 4 5 6 7 8 9 10 11
%e 2| 0 2 9 12 35 38 49 56 135 142 153 156
%e 3| 0 3 12 15 48 51 60 63 192 195 204 207
%e 4| 0 4 35 48 271 284 387 448 2111 2172 2275 2288
%e 5| 0 5 38 51 284 313 398 455 2168 2289 2502 2531
%e 6| 0 6 49 60 387 398 481 504 3079 3102 3185 3196
%e 7| 0 7 56 63 448 455 504 511 3584 3591 3640 3647
%e 8| 0 8 135 192 2111 2168 3079 3584 33279 33784 34695 34752
%e 9| 0 9 142 195 2172 2289 3102 3591 33784 34785 36622 36739
%e 10| 0 10 153 204 2275 2502 3185 3640 34695 36622 39993 40476
%e 11| 0 11 156 207 2288 2531 3196 3647 34752 36739 40476 40719
%e 12| 0 12 195 240 3087 3132 3843 4032 49215 49404 50115 50160
%o (PARI) toruns(n) = { my (r=[]); while (n, my (v=valuation(n+n%2, 2)); n\=2^v; r=concat(v, r)); r }
%o fromruns(r) = { my (v=0); for (k=1, #r, v=(v+k%2)*2^r[k]-k%2); v }
%o A(n,k) = { fromruns(Vec(Pol(toruns(n)) * Pol(toruns(k)))) }
%Y Cf. A001196, A097254, A101211, A355663.
%K nonn,base,tabl
%O 0,8
%A _Rémy Sigrist_, Jul 13 2022