login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. (1 + x)^(x^4/24).
3

%I #12 Jul 10 2022 06:32:15

%S 1,0,0,0,0,5,-15,70,-420,3024,-22050,202950,-2113650,24324300,

%T -305645340,4174483950,-61253992800,961049212200,-16054949350440,

%U 284505099278400,-5329752594075000,105239780964864000,-2184466455408699000,47550052231211237400

%N Expansion of e.g.f. (1 + x)^(x^4/24).

%H Seiichi Manyama, <a href="/A355603/b355603.txt">Table of n, a(n) for n = 0..451</a>

%F a(0) = 1; a(n) = -(n-1)!/24 * Sum_{k=5..n} (-1)^k * k/(k-4) * a(n-k)/(n-k)!.

%F a(n) = n! * Sum_{k=0..floor(n/5)} Stirling1(n-4*k,k)/(24^k * (n-4*k)!).

%o (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace((1+x)^(x^4/24)))

%o (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x^4/24*log(1+x))))

%o (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-(i-1)!/24*sum(j=5, i, (-1)^j*j/(j-4)*v[i-j+1]/(i-j)!)); v;

%o (PARI) a(n) = n!*sum(k=0, n\5, stirling(n-4*k, k, 1)/(24^k*(n-4*k)!));

%Y Cf. A007113, A355605.

%K sign

%O 0,6

%A _Seiichi Manyama_, Jul 09 2022