login
Sum of numerator and denominator in a rational approximation j/k of q = log(2)/log(3), such that j/k - q is a new minimum, i.e., q is approximated from above.
4

%I #7 Jul 05 2022 10:34:41

%S 2,5,18,31,137,928,1719,42047,82375,287453,779984,1272515,1765046,

%T 2257577,2750108,3242639,3735170,4227701,4720232,5212763,5705294,

%U 6197825,6690356,7182887,7675418,8167949,8660480,9153011,9645542,10138073,10630604,11123135,11615666,12108197

%N Sum of numerator and denominator in a rational approximation j/k of q = log(2)/log(3), such that j/k - q is a new minimum, i.e., q is approximated from above.

%o (PARI) a355515(upto) = {my(q=log(2)/log(3), dmin=oo); for (m=1, upto, my(n=ceil(m*q), qq=n/m, d=qq-q); if (d<dmin, print1(n+m,", "); dmin=d))};

%o \\ needs increased precision for larger terms

%o a355515(10^7)

%Y Cf. A102525, A355512, A355513, A355514.

%K nonn

%O 1,1

%A _Hugo Pfoertner_, Jul 05 2022