login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 7*3^n - 2.
1

%I #41 Jun 10 2024 06:14:10

%S 5,19,61,187,565,1699,5101,15307,45925,137779,413341,1240027,3720085,

%T 11160259,33480781,100442347,301327045,903981139,2711943421,

%U 8135830267,24407490805,73222472419,219667417261,659002251787,1977006755365,5931020266099,17793060798301,53379182394907

%N a(n) = 7*3^n - 2.

%C Right ending points of the gaps in A171884. The left ending points are given in A198643.

%H Jianing Song, <a href="/A355492/b355492.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,-3).

%F G.f.: (5-x)/((1-x)*(1-3*x)).

%F E.g.f.: 7*exp(3*x) - 2*exp(x).

%e The numbers not appearing in A171884 are those in the range [5*3^k-1, 7*3^k-2] for some k; that is, [4, 5] U [14, 19] U [44, 61] U ...

%t 7*3^Range[0, 50] - 2 (* _Paolo Xausa_, Jun 10 2024 *)

%o (PARI) a(n)=7*3^n-2

%Y Cf. A171884, A198643.

%K nonn,easy

%O 0,1

%A _Jianing Song_, Oct 07 2022