login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers of the form a+b+c = a^2 - b^2 - c^2 where a > b >= c > 0.
2

%I #34 Jul 05 2022 07:16:21

%S 8,15,20,24,27,32,35,39,44,48,49,51,54,55,56,63,64,65,68,75,80,84,87,

%T 90,92,95,98,99,104,111,114,116,119,120,123,125,128,132,135,140,143,

%U 144,147,152,153,155,159,160,164,168,170,171,174,175,176,183,184,185,188,189,195,200,203,204,207,208,209,212,215,216,219,220,224,230,231

%N Numbers of the form a+b+c = a^2 - b^2 - c^2 where a > b >= c > 0.

%C It seems that A082867 is a subsequence.

%C The first counterexample to the above is A082867(60) = 258. - _Charles R Greathouse IV_, Jul 05 2022

%H Charles R Greathouse IV, <a href="/A355490/b355490.txt">Table of n, a(n) for n = 1..10000</a>

%e 8 is a term: 8 = 4+2+2 = 4^2 - 2^2 - 2^2.

%e 15 is a term: 15 = 7+5+3 = 7^2 - 5^2 - 3^2.

%t Solve[a==r^2-s^2-d^2 && 1<=r<=120 && 1<=s<=120 && 1<=d<=120 && 0<=a && r>s>=d && a==r+s+d, {a,r,s,d}, Integers]

%o (PARI) list(lim)=my(v=List([8]));lim\=1;for(a=3,lim-2,my(a2=a^2);for(b=(sqrt(2*a^2+2*a+1)-1)\2,a-2,my(t=a2-b^2-a-b,s);if(issquare(4*t+1,&s) && (c=(s-1)/2)<=b && c<=b && a+b+c<=lim, listput(v,a+b+c)))); Set(v) \\ _Charles R Greathouse IV_, Jul 05 2022

%Y Cf. A082867, A082772, A134582, A355491.

%K nonn

%O 1,1

%A _Mohammad Arab_, Jul 04 2022

%E a(57) = 184 inserted by _Charles R Greathouse IV_, Jul 05 2022