Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Jun 30 2022 10:39:21
%S 1,0,1,0,3,1,0,9,6,1,0,22,27,10,1,0,51,98,66,15,1,0,108,315,340,135,
%T 21,1,0,221,918,1495,910,246,28,1,0,429,2492,5838,5070,2086,413,36,1,
%U 0,810,6372,20805,24543,14280,4284,652,45,1,0,1479,15525,68816,106535,83559,35168,8100,981,55,1,0,2640,36280,213945,423390,432930,243208,78282,14355,1420,66,1
%N G.f. A(x,y) satisfies: x*y = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x,y)^n, with coefficients T(n,k) of x^n*y^k in A(x,y) given as a triangle read by rows.
%C The term T(n,k) is found in row n and column k of this triangle, and can be used to derive the following sequences.
%C A355351(n) = Sum_{k=0..n} T(n,k) for n >= 0 (row sums).
%C A355352(n) = Sum_{k=0..n} T(n,k) * 2^k for n >= 0.
%C A355353(n) = Sum_{k=0..n} T(n,k) * 3^k for n >= 0.
%C A355354(n) = Sum_{k=0..n} T(n,k) * 4^k for n >= 0.
%C A355355(n) = Sum_{k=0..n} T(n,k) * 5^k for n >= 0.
%C A355356(n) = Sum_{k=0..floor(n/2)} T(n-k,k) for n >= 0 (antidiagonal sums).
%C A355357(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) for n >= 0.
%C A354658(n) = T(2*n,n) for n >= 0 (central terms of this triangle).
%C Conjectures:
%C (C.1) Column 1 equals A000716, the number of partitions into parts of 3 kinds;
%C (C.2) Column 2 equals A023005, the number of partitions into parts of 6 kinds.
%H Paul D. Hanna, <a href="/A355350/b355350.txt">Table of n, a(n) for n = 0..5150</a>
%F G.f. A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} T(n,k)*y^k satisfies:
%F (1) x*y = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x,y)^n.
%F (2) x*y*P(x) = Product_{n>=1} (1 - x^n*A(x,y)) * (1 - x^(n-1)/A(x,y)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function (A000041), due to the Jacobi triple product identity.
%e G.f.: A(x,y) = 1 + x*y + x^2*(3*y + y^2) + x^3*(9*y + 6*y^2 + y^3) + x^4*(22*y + 27*y^2 + 10*y^3 + y^4) + x^5*(51*y + 98*y^2 + 66*y^3 + 15*y^4 + y^5) + x^6*(108*y + 315*y^2 + 340*y^3 + 135*y^4 + 21*y^5 + y^6) + x^7*(221*y + 918*y^2 + 1495*y^3 + 910*y^4 + 246*y^5 + 28*y^6 + y^7) + x^8*(429*y + 2492*y^2 + 5838*y^3 + 5070*y^4 + 2086*y^5 + 413*y^6 + 36*y^7 + y^8) + x^9*(810*y + 6372*y^2 + 20805*y^3 + 24543*y^4 + 14280*y^5 + 4284*y^6 + 652*y^7 + 45*y^8 + y^9) + x^10*(1479*y + 15525*y^2 + 68816*y^3 + 106535*y^4 + 83559*y^5 + 35168*y^6 + 8100*y^7 + 981*y^8 + 55*y^9 + y^10) + ...
%e where
%e x*y = ... - x^10/A(x,y)^5 + x^6/A(x,y)^4 - x^3/A(x,y)^3 + x/A(x,y)^2 - 1/A(x,y) + 1 - x*A(x,y) + x^3*A(x,y)^2 - x^6*A(x,y)^3 + x^10*A(x,y)^4 -+ ... + (-1)^n * x^(n*(n+1)/2) * A(x,y)^n + ...
%e also, given P(x) is the partition function (A000041),
%e x*y*P(x) = (1 - x*A(x,y))*(1 - 1/A(x,y)) * (1 - x^2*A(x,y))*(1 - x/A(x,y)) * (1 - x^3*A(x,y))*(1 - x^2/A(x,y)) * (1 - x^4*A(x,y))*(1 - x^3/A(x,y)) * ... * (1 - x^n*A(x,y))*(1 - x^(n-1)/A(x,y)) * ...
%e TRIANGLE.
%e The triangle of coefficients T(n,k) of x^n*y^k in A(x,y), for k = 0..n in row n, begins:
%e n=0: [1];
%e n=1: [0, 1];
%e n=2: [0, 3, 1];
%e n=3: [0, 9, 6, 1];
%e n=4: [0, 22, 27, 10, 1];
%e n=5: [0, 51, 98, 66, 15, 1];
%e n=6: [0, 108, 315, 340, 135, 21, 1];
%e n=7: [0, 221, 918, 1495, 910, 246, 28, 1];
%e n=8: [0, 429, 2492, 5838, 5070, 2086, 413, 36, 1];
%e n=9: [0, 810, 6372, 20805, 24543, 14280, 4284, 652, 45, 1];
%e n=10: [0, 1479, 15525, 68816, 106535, 83559, 35168, 8100, 981, 55, 1];
%e n=11: [0, 2640, 36280, 213945, 423390, 432930, 243208, 78282, 14355, 1420, 66, 1];
%e n=12: [0, 4599, 81816, 630890, 1563705, 2033244, 1472261, 629280, 160965, 24145, 1991, 78, 1];
%e ...
%e in which column 1 appears to equal A000716, the coefficients in P(x)^3,
%e and column 2 appears to equal A023005, the coefficients in P(x)^6,
%e where P(x) is the partition function and begins
%e P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + ... + A000041(n)*x^n + ...
%e Also, the power series expansions of P(x)^3 and P(x)^6 begin
%e P(x)^3 = 1 + 3*x + 9*x^2 + 22*x^3 + 51*x^4 + 108*x^5 + 221*x^6 + 429*x^7 + 810*x^8 + 1479*x^9 + 2640*x^10 + ... + A000716(n)*x^n + ...
%e P(x)^6 = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 918*x^5 + 2492*x^6 + 6372*x^7 + 15525*x^8 + 36280*x^9 + 81816*x^10 + ... + A023005(n)*x^n + ...
%o (PARI) {T(n,k) = my(A=[1,y],t); for(i=1,n, A=concat(A,0); t = ceil(sqrt(2*(#A)+9));
%o A[#A] = -polcoeff( sum(m=-t,t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1));polcoeff(A[n+1],k,y)}
%o for(n=0,12, for(k=0,n, print1( T(n,k),", "));print(""))
%Y Cf. A355351 (row sums), A355352, A355353, A355354, A355355.
%Y Cf. A355356, A355357, A354658 (central terms).
%Y Cf. A354645, A354650 (related table), A000041, A000716, A023005.
%K nonn,tabl
%O 0,5
%A _Paul D. Hanna_, Jun 29 2022