login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355347
a(n) = binomial(3*n+3,n) + binomial(3*n+2,n-1) for n >= 0.
1
1, 7, 44, 275, 1729, 10948, 69768, 447051, 2877875, 18599295, 120609840, 784384692, 5114119724, 33417386200, 218786861392, 1434903854139, 9425348845815, 61997934676405, 408323057257500, 2692322893972635, 17770644483690945, 117406930477134480, 776363580147660960
OFFSET
0,2
COMMENTS
A355345(2*n*(n+1)) = (-1)^n * a(n) for n >= 1.
Limit_{n->oo} a(n)/a(n+1) = 4/27.
FORMULA
G.f.: G(x)^3 * (1 + x*G(x)^2) / (1 - 3*x*G(x)^2), where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.
G.f.: G'(x) * (1 + x*G(x)^2), where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.
a(n) = [x^n] (1+x)/(1-x)^(2*n+4) for n >= 0.
EXAMPLE
G.f.: A(x) = 1 + 7*x + 44*x^2 + 275*x^3 + 1729*x^4 + 10948*x^5 + 69768*x^6 + 447051*x^7 + 2877875*x^8 + 18599295*x^9 + 120609840*x^10 + ...
such that
A(x) = G(x)^3 * (1 + x*G(x)^2) / (1 - 3*x*G(x)^2)
where G(x) = 1 + x*G(x)^3 begins
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 + 7752*x^7 + 43263*x^8 + 246675*x^9 + 1430715*x^10 + ... + A001764(n)*x^n + ...
PROG
(PARI) {a(n) = binomial(3*n+3, n) + binomial(3*n+2, n-1)}
for(n=0, 22, print1(a(n), ", "))
CROSSREFS
Sequence in context: A190974 A027279 A099464 * A254660 A093738 A091127
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 25 2022
STATUS
approved