login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: A(x,y) = Sum_{n=-oo..+oo} (x*y)^(n*(n+1)/2) * C(x)^(2*n-1), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
1

%I #7 Jul 27 2022 10:32:16

%S 2,-4,2,-1,-4,0,-3,7,0,2,-8,5,0,-4,0,-23,14,0,23,0,0,-70,41,0,21,0,0,

%T 2,-222,127,0,90,0,0,-4,0,-726,409,0,297,0,0,47,0,0,-2431,1355,0,1001,

%U 0,0,45,0,0,0,-8294,4587,0,3431,0,0,284,0,0,0,2,-28730,15795,0,11927,0,0,1001,0,0,0,-4,0,-100776,55146,0,41955,0,0,3640,0,0,0,79,0,0,-357238,194752,0,149072,0,0,13260,0,0,0,77,0,0,0

%N G.f.: A(x,y) = Sum_{n=-oo..+oo} (x*y)^(n*(n+1)/2) * C(x)^(2*n-1), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).

%F G.f. A(x,y) = Sum_{n>=0} x^n * Sum_{k=0..n} T(n,k) * y^k may be obtained from the following expressions; here, C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).

%F (1) A(x,y) = Sum_{n=-oo..+oo} (x*y)^(n*(n+1)/2) * C(x)^(2*n-1).

%F (2) A(x,y) = Sum_{n>=0} (x*y)^(n*(n+1)/2) * (C(x)^(2*n-1) + 1/C(x)^(2*n+3)).

%F (3) A(x,y) = 1/C(x)^3 * Product_{n>=1} (1 + (x*y)^(n-1)*C(x)^2) * (1 + (x*y)^n/C(x)^2) * (1-(x*y)^n), by the Jacobi triple product identity.

%e G.f.: A(x,y) = 2 + (2*y - 4)*x + (-4*y - 1)*x^2 + (2*y^3 + 7*y - 3)*x^3 + (-4*y^3 + 5*y - 8)*x^4 + (23*y^3 + 14*y - 23)*x^5 + (2*y^6 + 21*y^3 + 41*y - 70)*x^6 + (-4*y^6 + 90*y^3 + 127*y - 222)*x^7 + (47*y^6 + 297*y^3 + 409*y - 726)*x^8 + (45*y^6 + 1001*y^3 + 1355*y - 2431)*x^9 + (2*y^10 + 284*y^6 + 3431*y^3 + 4587*y - 8294)*x^10 + ...

%e such that

%e A(x,y) = ... + (x*y)^6/C(x)^9 + (x*y)^3/C(x)^7 + (x*y)/C(x)^5 + 1/C(x)^3 + 1/C(x) + (x*y)*C(x) + (x*y)^3*C(x)^3 + (x*y)^6*C(x)^5 + (x*y)^10*C(x)^7 + (x*y)^15*C(x)^9 + ... + (x*y)^(n*(n+1)/2) * C(x)^(2*n-1) + ...

%e also

%e A(x,y) = 1/C(x)^3 * (1 + C(x)^2)*(1 + x*y/C(x)^2)*(1-x) * (1 + x*y*C(x)^2)*(1 + (x*y)^2/C(x)^2)*(1-x^2) * (1 + (x*y)^2*C(x)^2)*(1 + (x*y)^3/C(x)^2)*(1-(x*y)^3) * (1 + (x*y)^3*C(x)^2)*(1 + (x*y)^4/C(x)^2)*(1-(x*y)^4) * ... * (1 + (x*y)^(n-1)*C(x)^2)*(1 + (x*y)^n/C(x)^2)*(1-(x*y)^n) * ...

%e where C(x) = 1 + x*C(x)^2 begins

%e C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + 1430*x^8 + ... + A000108(n)*x^n + ...

%e This triangle of coefficients T(n,k) of x^n*y^k in A(x,y), for k = 0..n in row n, n >= 0, begins:

%e 2;

%e -4, 2;

%e -1, -4, 0;

%e -3, 7, 0, 2;

%e -8, 5, 0, -4, 0;

%e -23, 14, 0, 23, 0, 0;

%e -70, 41, 0, 21, 0, 0, 2;

%e -222, 127, 0, 90, 0, 0, -4, 0;

%e -726, 409, 0, 297, 0, 0, 47, 0, 0;

%e -2431, 1355, 0, 1001, 0, 0, 45, 0, 0, 0;

%e -8294, 4587, 0, 3431, 0, 0, 284, 0, 0, 0, 2;

%e -28730, 15795, 0, 11927, 0, 0, 1001, 0, 0, 0, -4, 0;

%e -100776, 55146, 0, 41955, 0, 0, 3640, 0, 0, 0, 79, 0, 0;

%e -357238, 194752, 0, 149072, 0, 0, 13260, 0, 0, 0, 77, 0, 0, 0;

%e -1277788, 694450, 0, 534251, 0, 0, 48450, 0, 0, 0, 692, 0, 0, 0, 0;

%e -4605980, 2496790, 0, 1928992, 0, 0, 177649, 0, 0, 0, 2537, 0, 0, 0, 0, 2;

%e ...

%e the row sums of which yield A355345:

%e [2, -2, -5, 6, -7, 14, -6, -9, 27, -30, 10, -11, 44, -77, 55, -10, -13, 65, -156, 182, -91, ...].

%e The row sums in turn form the antidiagonals of the rectangular table given by:

%e n = 0: [ 2, -5, 14, -30, 55, -91, 140, ...];

%e n = 1: [ -2, -7, 27, -77, 182, -378, 714, ...];

%e n = 2: [ 6, -9, 44, -156, 450, -1122, 2508, ...];

%e n = 3: [ -6, -11, 65, -275, 935, -2717, 7007, ...];

%e n = 4: [ 10, -13, 90, -442, 1729, -5733, 16744, ...];

%e n = 5: [-10, -15, 119, -665, 2940, -10948, 35700, ...];

%e n = 6: [ 14, -17, 152, -952, 4692, -19380, 69768, ...];

%e n = 7: [-14, -19, 189, -1311, 7125, -32319, 127281, ...];

%e ...

%e in which row n has g.f.: (-1)^n*(2*n+1) + (1-x)/(1+x)^(2*n+4) for n >= 0.

%o (PARI) {T(n,k) = my(A,C = serreverse(x-x^2 +x^2*O(x^n))/x, M = sqrtint(2*n+9));

%o A = sum(m=0,n+2, (x*y)^(m*(m+1)/2) * (C^(2*m-1) + 1/C^(2*m+3))); polcoeff(polcoeff(A,n,x),k,y)}

%o for(n=0,16,for(k=0,n, print1(T(n,k),", "));print(""))

%Y Cf. A355345, A000108.

%K sign,tabl

%O 0,1

%A _Paul D. Hanna_, Jul 25 2022