Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Aug 02 2024 12:04:25
%S 0,1,0,1,-3,0,2,-3,0,0,5,-7,0,5,0,14,-19,0,5,0,0,42,-56,0,15,0,0,0,
%T 132,-174,0,45,0,0,-7,0,429,-561,0,141,0,0,-7,0,0,1430,-1859,0,457,0,
%U 0,-28,0,0,0,4862,-6292,0,1520,0,0,-91,0,0,0,0,16796,-21658,0,5159,0,0,-301,0,0,0,9,0,58786,-75582,0,17797,0,0,-1015,0,0,0,9,0,0,208012
%N G.f.: A(x,y) = Sum_{n=-oo..+oo} (-1)^n * (x*y)^(n*(n+1)/2) * C(x)^n, where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108), as a triangle of coefficients T(n,k) of x^n*y^k in A(x,y), read by rows n >= 0.
%H Paul D. Hanna, <a href="/A355344/b355344.txt">Table of n, a(n) for n = 0..1325</a>
%F G.f. A(x,y) = Sum_{n>=0} x^n * Sum_{k=0..n} T(n,k) * y^k is equal to the following expressions; here, C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
%F (1) A(x,y) = Sum_{n=-oo..+oo} (-1)^n * (x*y)^(n*(n+1)/2) * C(x)^n,
%F (2) A(x,y) = Sum_{n>=0} (-1)^n * (x*y)^(n*(n+1)/2) * (C(x)^n - 1/C(x)^(n+1)).
%F (3) A(x,y) = -1/C(x) * Product_{n>=1} (1 - (x*y)^n/C(x)) * (1 - (x*y)^(n-1)*C(x)) * (1-(x*y)^n), by the Jacobi triple product identity.
%e G.f.: A(x,y) = x + (-3*y + 1)*x^2 + (-3*y + 2)*x^3 + (5*y^3 - 7*y + 5)*x^4 + (5*y^3 - 19*y + 14)*x^5 + (15*y^3 - 56*y + 42)*x^6 + (-7*y^6 + 45*y^3 - 174*y + 132)*x^7 + (-7*y^6 + 141*y^3 - 561*y + 429)*x^8 + (-28*y^6 + 457*y^3 - 1859*y + 1430)*x^9 + ...
%e where
%e A(x,y) = ... + (x*y)^6/C(x)^4 - (x*y)^3/C(x)^3 + (x*y)/C(x)^2 - 1/C(x) + 1 - (x*y)*C(x) + (x*y)^3*C(x)^2 - (x*y)^6*C(x)^3 +- ... + (-1)^n * (x*y)^(n*(n+1)/2) * C(x)^n + ...
%e This triangle of coefficients T(n,k) of x^n*y^k in g.f. A(x,y), for k = 0..n in row n, begins:
%e n = 0: [0];
%e n = 1: [1, 0];
%e n = 2: [1, -3, 0];
%e n = 3: [2, -3, 0, 0];
%e n = 4: [5, -7, 0, 5, 0];
%e n = 5: [14, -19, 0, 5, 0, 0];
%e n = 6: [42, -56, 0, 15, 0, 0, 0];
%e n = 7: [132, -174, 0, 45, 0, 0, -7, 0];
%e n = 8: [429, -561, 0, 141, 0, 0, -7, 0, 0];
%e n = 9: [1430, -1859, 0, 457, 0, 0, -28, 0, 0, 0];
%e n = 10: [4862, -6292, 0, 1520, 0, 0, -91, 0, 0, 0, 0];
%e n = 11: [16796, -21658, 0, 5159, 0, 0, -301, 0, 0, 0, 9, 0];
%e n = 12: [58786, -75582, 0, 17797, 0, 0, -1015, 0, 0, 0, 9, 0, 0];
%e n = 13: [208012, -266798, 0, 62218, 0, 0, -3480, 0, 0, 0, 48, 0, 0, 0];
%e n = 14: [742900, -950912, 0, 219946, 0, 0, -12099, 0, 0, 0, 165, 0, 0, 0, 0];
%e n = 15: [2674440, -3417340, 0, 784890, 0, 0, -42562, 0, 0, 0, 573, 0, 0, 0, 0, 0];
%e n = 16: [9694845, -12369285, 0, 2823666, 0, 0, -151228, 0, 0, 0, 2007, 0, 0, 0, 0, -11, 0];
%e ...
%e The row sums of this triangle form sequence A355342:
%e [0, 1, -2, -1, 3, 0, 1, -4, 2, 0, -1, 5, -5, 0, 0, 1, -6, 9, -2, 0, 0, -1, 7, -14, 7, 0, 0, 0, 1, -8, 20, -16, 2, 0, 0, 0, -1, ...],
%e which in turn may be written in the form of a triangle:
%e 0,
%e 1, -2,
%e -1, 3, 0,
%e 1, -4, 2, 0,
%e -1, 5, -5, 0, 0,
%e 1, -6, 9, -2, 0, 0,
%e -1, 7, -14, 7, 0, 0, 0,
%e 1, -8, 20, -16, 2, 0, 0, 0,
%e -1, 9, -27, 30, -9, 0, 0, 0, 0,
%e 1, -10, 35, -50, 25, -2, 0, 0, 0, 0,
%e -1, 11, -44, 77, -55, 11, 0, 0, 0, 0, 0,
%e 1, -12, 54, -112, 105, -36, 2, 0, 0, 0, 0, 0,
%e ...
%o (PARI) {T(n,k) = my(A,C = serreverse(x-x^2 +x^2*O(x^n))/x, M = sqrtint(2*n+9));
%o A = sum(m=-M,M, (-1)^m * (x*y)^(m*(m+1)/2) * C^m); polcoeff(polcoeff(A,n,x),k,y)}
%o for(n=0,16,for(k=0,n, print1(T(n,k),", "));print(""))
%o (PARI) {T(n,k) = my(A,C = serreverse(x-x^2 +x^2*O(x^n))/x, M = sqrtint(2*n+9));
%o A = sum(m=0,n+2, (-1)^m * (x*y)^(m*(m+1)/2) * (C^m - 1/C^(m+1))); polcoeff(polcoeff(A,n,x),k,y)}
%o for(n=0,16,for(k=0,n, print1(T(n,k),", "));print(""))
%Y Cf. A000108, A355342, A355343.
%K sign,tabl
%O 0,5
%A _Paul D. Hanna_, Jul 22 2022