login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355318
Indices of the primes that have the same base-10 digits as the corresponding prime number (with multiplicity), disregarding zero digits.
3
751, 2971, 5174, 5594, 5789, 6106, 6151, 6376, 6613, 7129, 12376, 23719, 24758, 47135, 53146, 73906, 73969, 74956, 96512, 111406, 114475, 119825, 126896, 128377, 131657, 135815, 135817, 137681, 152402, 158924, 182045, 192641, 197269, 203383, 203758, 215809, 218332, 230261, 230431, 232946, 233485, 235918
OFFSET
1,1
EXAMPLE
976571 is a term since prime(976571) = 15097067 has the same multiset of nonzero digits {1,5,6,7,7,9} as its index 976571.
MATHEMATICA
a[max_] := Module[{l}, Select[{#, Prime[#]} & /@ Range[max], (l = IntegerDigits[#[[2]]]; SortBy[Tally[l], First] === SortBy[Tally[PadLeft[IntegerDigits[#[[1]]], Length[l]]], First]) &]]; a[10^6][[All, 1]] (* Gives the first 108 terms *)
PROG
(Python)
from sympy import nextprime
from itertools import islice
def b10s(n): return "".join(sorted(str(n))).lstrip("0")
def agen():
k, pk = 1, 2
while True:
if b10s(k) == b10s(pk): yield k
k, pk = k+1, nextprime(pk)
print(list(islice(agen(), 32))) # Michael S. Branicky, Jun 28 2022
(PARI) strip0(v) = {my(nn=1); while(v[nn]==0, nn++); v[nn..#v]};
a355318(upto) = {my(k=0); forprime (p=2, upto, k++; if(strip0(vecsort(digits(k))) == strip0(vecsort(digits(p))), print1(k, ", ")))};
a355318(4000000); \\ Hugo Pfoertner, Jul 05 2022
CROSSREFS
Cf. A355317 (the corresponding primes), A355539.
Sequence in context: A291524 A373206 A020391 * A252807 A332000 A223447
KEYWORD
base,easy,nonn
AUTHOR
Xiaofeng Wang, Jun 28 2022
STATUS
approved