login
Triangle read by rows, T(n, k) = n! * [y^k] [x^n] exp(1/(1 - x)^(1 + y) - 1), for 0 <= k <= n.
1

%I #7 Jul 06 2022 11:10:37

%S 1,1,1,3,5,2,13,29,21,5,73,200,202,90,15,501,1609,2045,1295,410,52,

%T 4051,14809,22418,18085,8220,1998,203,37633,153453,267400,259175,

%U 151165,53095,10402,877,394353,1767240,3463612,3889620,2740885,1241632,353178,57676,4140

%N Triangle read by rows, T(n, k) = n! * [y^k] [x^n] exp(1/(1 - x)^(1 + y) - 1), for 0 <= k <= n.

%e Triangle T(n, k) begins:

%e [0] 1;

%e [1] 1, 1;

%e [2] 3, 5, 2;

%e [3] 13, 29, 21, 5;

%e [4] 73, 200, 202, 90, 15;

%e [5] 501, 1609, 2045, 1295, 410, 52;

%e [6] 4051, 14809, 22418, 18085, 8220, 1998, 203;

%e [7] 37633, 153453, 267400, 259175, 151165, 53095, 10402, 877;

%p egf := exp(1/(1 - x)^(1 + y) - 1):

%p ser := series(egf, x, 12): cfx := n -> coeff(ser, x, n):

%p seq(print(seq(n!*(coeff(cfx(n), y, k)), k = 0..n)), n = 0..8);

%Y Cf. A136658 (row sums), A000007 (alternating row sums), A000262 (column 0), A216313 (column 1), A000110 (main diagonal).

%Y Cf. A355260.

%K nonn,tabl

%O 0,4

%A _Peter Luschny_, Jul 05 2022