Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Nov 13 2022 08:40:04
%S 1,2,3,4,5,6,7,4,9,10,11,12,13,14,15,8,17,18,19,20,21,22,23,12,25,26,
%T 9,28,29,30,31,8,33,34,35,36,37,38,39,20,41,42,43,44,45,46,47,24,49,
%U 50,51,52,53,18,55,28,57,58,59,60,61,62,63,16,65,66,67,68
%N a(n) = largest-nth-power(n, 2) * radical(n) = A000188(n) * A007947(n), where largest-nth-power(n, e) is the largest positive integer b such that b^e divides n.
%H Michael De Vlieger, <a href="/A355261/b355261.txt">Table of n, a(n) for n = 1..10000</a>
%F Multiplicative with a(p^e) = p^(1+floor(e/2)). - _Amiram Eldar_, Jul 13 2022
%F Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(3)/2) * Product_{p prime} (1 - 2/p^3 + 1/p^4) = 0.447583182004... . - _Amiram Eldar_, Nov 13 2022
%p with(NumberTheory): seq(LargestNthPower(n, 2)*Radical(n), n = 1..68);
%t Array[Apply[Times, #[[All, 1]]]*Apply[Times, #1^Floor[#2/2] & @@ Transpose@ #] &@ FactorInteger[#] &, 68] (* _Michael De Vlieger_, Jul 12 2022 *)
%o (Python)
%o from math import prod
%o from sympy import factorint
%o def A355261(n): return prod(p**((e>>1)+1) for p, e in factorint(n).items()) # _Chai Wah Wu_, Jul 13 2022
%Y Cf. A000188, A002117, A007947, A064549, A355263.
%K nonn,mult
%O 1,2
%A _Peter Luschny_, Jul 12 2022