Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Aug 09 2022 14:06:55
%S 1,11,77,412,2009,8869,36988,146578,560498,2078927,7530385,26734692,
%T 93360884,321454484,1093599885,3681897625,12284317088,40660245162,
%U 133638662066,436488290069,1417680926923,4581355626106
%N Number of unoriented multidimensional n-ominoes with cell centers determining n-3 space.
%C Multidimensional polyominoes are connected sets of cells of regular tilings with Schläfli symbols {oo}, {4,4}, {4,3,4}, {4,3,3,4}, etc. Each tile is a regular orthotope (hypercube). For unoriented polyominoes, chiral pairs are counted as one.
%H Robert A. Russell, <a href="/A355053/b355053.txt">Table of n, a(n) for n = 4..100</a>
%H W. F. Lunnon, <a href="http://dx.doi.org/10.1093/comjnl/18.4.366">Counting multidimensional polyominoes</a>. Computer Journal 18 (1975), no. 4, pp. 366-367.
%H Robert A. Russell, <a href="/A355053/a355053.pdf">Trunk Generating Functions</a>
%F a(n) = A355052(n) - A355054(n) = (A355052(n) + A355055(n)) / 2 = A355054(n) + A355055(n).
%F a(n) = A049430(n,n-3), the third diagonal of Lunnon's DE array.
%F G.f.: (50B(x)^6+3B(x)^7+30B(x)^2B(x^2)^2+3B(x)^3B(x^2)(6+B(x^2))+3B(x)^5(37+2B(x^2))+12B(x)^4(1+3B(x^2))+B(x)(57B(x^2)^2+6B(x^2)^3+6B(x^4)+6B(x^2)B(x^4))+4(3B(x^2)^2+11B(x^2)^3+B(x^3)^2+B(x^6)))/24 + B(x)^2(112B(x)^5+9B(x)^6+3B(x^2)^2+4B(x)B(x^2)^2+B(x)^2B(x^2)(14+B(x^2))+8B(x)^3(1+4B(x^2))+B(x)^4(167+10B(x^2)))/(8(1-B(x))) + B(x)^5(46B(x)^3+6B(x)^4+3B(x^2)+B(x)^2(67+2B(x^2))+B(x)(2+6B(x^2)))/(2(1-B(x))^2) + B(x)^6(153B(x)^2+75B(x)^3+12B(x)^4+3B(x^2)+B(x)(4+3B(x^2)))/(6(1-B(x))^3) + B(x)^9(21+4B(x))/(2(1-B(x))^4) + 3B(x)^10/(2(1-B(x))^5) + B(x^2)(6B(x)^3B(x^2)+2B(x)^4B(x^2)+13B(x^2)^2+19B(x^2)^3+2B(x)^2B(x^2)(1+3B(x^2))+B(x^4)+B(x^2)B(x^4)+B(x)(35B(x^2)^2+5B(x^2)^3+B(x^4)+B(x^2)B(x^4)))/(4(1-B(x^2))) + B(x^2)^4(5+3B(x^2)+B(x)(8+B(x^2)))/(1-B(x^2))^2 + 2B(x^2)^5(1+B(x))/(1-B(x^2))^3 + 2B(x)B(x^3)^2/(6(1-B(x^3))) + B(x)B(x^4)^2/(2(1-B(x^4))) + B(x)^2B(x^2)^2(7B(x)^2+5B(x)^3+3B(x^2)+B(x)(2+B(x^2)))/(2(1-B(x))(1-B(x^2))) + B(x)^5B(x^2)^2(3+2B(x))/((1-B(x))^2(1-B(x^2))) + B(x)^6B(x^2)^2/((1-B(x))^3(1-B(x^2))) + B(x)^2B(x^2)^4/((1-B(x))(1-B(x^2))^2) + B(x^2)B(x^4)^2(1+B(x))/(2(1-B(x^2))(1-B(x^4))), where B(x) is the generating function for rooted trees with n nodes in A000081.
%e a(4)=1 as there is only one tetromino in one-space. a(5)=11 because there are 5 achiral and 6 chiral pairs of pentominoes in 2-space, excluding the 1-D straight pentomino.
%t sb[n_,k_]:= sb[n,k] = b[n+1-k,1] + If[n<2k, 0, sb[n-k,k]];
%t b[1,1] := 1; b[n_,1] := b[n,1] = Sum[b[i,1]sb[n-1,i]i,{i,1,n-1}]/(n-1);
%t b[n_,k_] := b[n,k] = Sum[b[i,1]b[n-i,k-1],{i,1,n-1}];
%t nmax = 30; B[x_] := Sum[b[i,1]x^i,{i,0,nmax}]
%t Drop[CoefficientList[Series[(50B[x]^6+3B[x]^7+30B[x]^2B[x^2]^2+3B[x]^3B[x^2](6+B[x^2])+3B[x]^5(37+2B[x^2])+12B[x]^4(1+3B[x^2])+B[x](57B[x^2]^2+6B[x^2]^3+6B[x^4]+6B[x^2]B[x^4])+4(3B[x^2]^2+11B[x^2]^3+B[x^3]^2+B[x^6]))/24+B[x]^2(112B[x]^5+9B[x]^6+3B[x^2]^2+4B[x]B[x^2]^2+B[x]^2B[x^2](14+B[x^2])+8B[x]^3(1+4B[x^2])+B[x]^4(167+10B[x^2]))/(8(1-B[x]))+B[x]^5(46B[x]^3+6B[x]^4+3B[x^2]+B[x]^2(67+2B[x^2])+B[x](2+6B[x^2]))/(2(1-B[x])^2)+B[x]^6(153B[x]^2+75B[x]^3+12B[x]^4+3B[x^2]+B[x](4+3B[x^2]))/(6(1-B[x])^3)+B[x]^9(21+4B[x])/(2(1-B[x])^4)+3B[x]^10/(2(1-B[x])^5)+B[x^2](6B[x]^3B[x^2]+2B[x]^4B[x^2]+13B[x^2]^2+19B[x^2]^3+2B[x]^2B[x^2](1+3B[x^2])+B[x^4]+B[x^2]B[x^4]+B[x](35B[x^2]^2+5B[x^2]^3+B[x^4]+B[x^2]B[x^4]))/(4(1-B[x^2]))+B[x^2]^4(5+3B[x^2]+B[x](8+B[x^2]))/(1-B[x^2])^2+2B[x^2]^5(1+B[x])/(1-B[x^2])^3+2B[x]B[x^3]^2/(6(1-B[x^3]))+B[x]B[x^4]^2/(2(1-B[x^4]))+B[x]^2B[x^2]^2(7B[x]^2+5B[x]^3+3B[x^2]+B[x](2+B[x^2]))/(2(1-B[x])(1-B[x^2]))+B[x]^5B[x^2]^2(3+2B[x])/((1-B[x])^2(1-B[x^2]))+B[x]^6B[x^2]^2/((1-B[x])^3(1-B[x^2]))+B[x]^2B[x^2]^4/((1-B[x])(1-B[x^2])^2)+B[x^2]B[x^4]^2(1+B[x])/(2(1-B[x^2])(1-B[x^4])),{x,0,nmax}],x],4]
%Y Cf. A355052 (oriented), A355054 (chiral), A355055 (achiral) A355056 (asymmetric), A191092 (fixed), A000081 (rooted trees), A049430 (Lunnon's DE).
%Y Other dimensions: A036364 (n-2), A000055 (n-1), A355048 (orthoplex).
%K nonn,easy
%O 4,2
%A _Robert A. Russell_, Jun 16 2022