Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Jun 18 2022 08:42:46
%S 1,1,2,3,4,5,1,2,7,9,1,2,7,9,11,3,5,6,8,10,12,1,2,4,7,9,11,13,1,2,4,7,
%T 9,11,13,14,3,5,6,10,12,15,17,19,20,1,2,4,7,8,9,11,13,14,16,1,2,4,7,8,
%U 9,11,13,14,16,18,3,5,6,10,12,15,17,19,20,21,23,24
%N Triangle T(n, k), n > 0, k = 1..n, read by rows; each row contains the smallest distinct positive integers (in ascending order) such that a term of row n times a term of row n+1 does not appear in row n+2.
%C Conjecture:
%C - rows with indexes of the form 3*k converge to some sequence R:
%C R = 3, 5, 6, 10, 12, 15, 17, 19, 20, 21, 23, 24, 27, 29, 30, 33, 34, ...
%C - the other rows converge to some other sequence S:
%C S = 1, 2, 4, 7, 8, 9, 11, 13, 14, 16, 18, 22, 25, 26, 28, 31, 32, 36, ...
%C - R and S partition the positive integers,
%C - for any i, j, k:
%C R(i) <> S(j) * S(k),
%C S(i) <> R(k) * S(k).
%H Rémy Sigrist, <a href="/A355008/b355008.txt">Table of n, a(n) for n = 1..10011</a> (rows for n = 1..141 flattened)
%e Triangle T(n, k) begins:
%e 1,
%e 1, 2,
%e 3, 4, 5,
%e 1, 2, 7, 9,
%e 1, 2, 7, 9, 11,
%e 3, 5, 6, 8, 10, 12,
%e 1, 2, 4, 7, 9, 11, 13,
%e 1, 2, 4, 7, 9, 11, 13, 14,
%e 3, 5, 6, 10, 12, 15, 17, 19, 20,
%e 1, 2, 4, 7, 8, 9, 11, 13, 14, 16,
%e 1, 2, 4, 7, 8, 9, 11, 13, 14, 16, 18,
%e 3, 5, 6, 10, 12, 15, 17, 19, 20, 21, 23, 24,
%e ...
%o (PARI) { rrr=rr=[]; for (n=1, 12, x=setbinop((i,j)->i*j, rrr,rr); r=vector(n); k=0; for (v=1, oo, if (!setsearch(x,v), print1 (r[k++]=v", "); if (k==n, break))); [rrr,rr]=[rr,r]) }
%Y Cf. A135018.
%K nonn,tabl
%O 1,3
%A _Rémy Sigrist_, Jun 15 2022