Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Sep 28 2022 10:45:23
%S 1,2,3,4,5,3,7,8,9,5,11,4,13,7,5,16,17,9,19,5,7,11,23,8,25,13,27,7,29,
%T 6,31,32,11,17,7,9,37,19,13,8,41,7,43,11,9,23,47,16,49,25,17,13,53,27,
%U 11,8,19,29,59,12,61,31,9,64,13,11,67,17,23,10,71,9,73,37,25,19,11,13,79,16,81,41,83,12,17,43
%N a(1) = 1; for n > 1, a(n) = n / the largest divisor of n that is coprime to a larger divisor of n.
%C a(n) is the smallest divisor d of n such that d >= sqrt(n) and that gcd(d,n/d) = 1. For the proof see A052128. - _Jianing Song_, Sep 28 2022
%H Antti Karttunen, <a href="/A354933/b354933.txt">Table of n, a(n) for n = 1..20000</a>
%F a(n) = n / A052128(n).
%F a(n) = A052128(n) + A076388(n).
%t a[n_] := SelectFirst[Divisors[n], # >= n/# && CoprimeQ[#, n/#] &]; Array[a, 100] (* _Amiram Eldar_, Jun 16 2022 *)
%o (PARI) A354933(n) = fordiv(n,d,if((d>=(n/d)) && 1==gcd(d,n/d), return(d)));
%Y Cf. A052128, A076388.
%Y Differs from A346596 for the first time at n=60, where a(60) = 12, while A346596(60) = 15.
%K nonn
%O 1,2
%A _Antti Karttunen_, Jun 16 2022
%E Definition rewritten by _Jianing Song_, Sep 28 2022