%I #11 Jun 12 2022 02:57:38
%S 0,1,2,4,8,11,16,26,32,39,50,57,64,86,98,120,128,143,166,181,194,209,
%T 232,247,256,302,326,372,386,432,456,502,512,543,590,621,646,677,724,
%U 755,770,801,848,879,904,935,982,1013,1024,1118,1166,1260,1286,1380,1428
%N Numbers whose skew binary representation (A169683) is palindromic.
%C The sequence of powers of 2 (A000079) is a subsequence since A169683(1) = 1, A169683(2) = 2, and for n > 2 A169683(2^n) = 10..01 with n-1 0's between the two 1's.
%C A000295 is a subsequence since A169683(A000295(0)) = A169683(A000295(1)) = 0 and for n>1 A169683(A000295(n)) is a repunit with n-1 1's.
%C A144414 is a subsequence since A169683(A144414(1)) = 1 and for n>1 A169683(A144414(n)) = 1010..01 with n-1 0's interleaved with n 1's.
%H Amiram Eldar, <a href="/A354884/b354884.txt">Table of n, a(n) for n = 1..10000</a>
%e The first 10 terms are:
%e n a(n) A169683(a(n))
%e -- ---- -------------
%e 1 0 0
%e 2 1 1
%e 3 2 2
%e 4 4 11
%e 5 8 101
%e 6 11 111
%e 7 16 1001
%e 8 26 1111
%e 9 32 10001
%e 10 39 10101
%t f[0] = 0; f[n_] := Module[{m = Floor@Log2[n + 1], d = n, pos}, Reap[While[m > 0, pos = 2^m - 1; Sow@Floor[d/pos]; d = Mod[d, pos]; --m;]][[2, 1]] // FromDigits]; Select[Range[0, 15000], PalindromeQ[f[#]] &] (* after _N. J. A. Sloane_ at A169683 *)
%Y Cf. A169683.
%Y Subsequences: A000079, A000295, A144414.
%Y Similar sequences: A002113, A006995, A014190, A094202, A331191, A351712, A351717, A352087, A352105, A352319, A352341.
%K nonn,base
%O 1,3
%A _Amiram Eldar_, Jun 10 2022