login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Dirichlet inverse of A344005, the smallest positive m such that n divides the oblong number m*(m+1).
4

%I #11 Jun 12 2022 15:38:57

%S 1,-1,-2,-2,-4,2,-6,-2,-4,4,-10,7,-12,6,11,0,-16,4,-18,16,18,10,-22,4,

%T -8,12,-2,23,-28,-11,-30,4,29,16,34,12,-36,18,36,5,-40,-18,-42,39,27,

%U 22,-46,-6,-12,8,47,48,-52,2,70,25,54,28,-58,-78,-60,30,21,8,71,-29,-66,64,65,-34,-70,24,-72,36,16,71,99

%N Dirichlet inverse of A344005, the smallest positive m such that n divides the oblong number m*(m+1).

%H Antti Karttunen, <a href="/A354875/b354875.txt">Table of n, a(n) for n = 1..20000</a>

%F a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A344005(n/d) * a(d).

%F a(n) = A354876(n) - A344005(n).

%t f[n_] := Module[{m = 1}, While[! Divisible[m*(m + 1), n], m++]; m]; a[1] = 1; a[n_] := a[n] = -DivisorSum[n, a[#]*f[n/#] &, # < n &]; Array[a, 100] (* _Amiram Eldar_, Jun 12 2022 *)

%o (PARI)

%o A344005(n) = for(m=1, oo, if((m*(m+1))%n==0, return(m))); \\ From A344005

%o memoA354875 = Map();

%o A354875(n) = if(1==n,1,my(v); if(mapisdefined(memoA354875,n,&v), v, v = -sumdiv(n,d,if(d<n,A344005(n/d)*A354875(d),0)); mapput(memoA354875,n,v); (v)));

%Y Cf. A002378, A344005, A354876, A354877 (positions of 0's).

%Y Cf. also A345055.

%K sign

%O 1,3

%A _Antti Karttunen_, Jun 12 2022