login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the hafnian of the 2n X 2n symmetric matrix whose element M_{i,j} equals phi(abs(i-j)).
0

%I #42 Oct 14 2023 23:54:08

%S 1,1,4,49,1193,50228,3098989,271913937,31382686354,4668707087571,

%T 880702869805775

%N a(n) is the hafnian of the 2n X 2n symmetric matrix whose element M_{i,j} equals phi(abs(i-j)).

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Hafnian">Hafnian</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_matrix">Symmetric matrix</a>

%e a(2) = M_{1,2}*M_{3,4} + M_{1,3}*M_{2,4} + M_{1,4}*M_{2,3} = 4 is the hafnian of

%e 0, 1, 1, 2;

%e 1, 0, 1, 1;

%e 1, 1, 0, 1;

%e 2, 1, 1, 0.

%t M[i_, j_, n_]:=Part[Part[Table[EulerPhi[Abs[r-c]], {r, n}, {c, n}], i], j]; a[n_]:=Sum[Product[M[Part[PermutationList[s, 2n], 2i-1], Part[PermutationList[s, 2n], 2i], 2n], {i, n}], {s, SymmetricGroup[2n]//GroupElements}]/(n!*2^n); Array[a, 6, 0]

%o (PARI) aphi(n) = n=abs(n); if(n>0, eulerphi(n), 0);

%o tm(n) = matrix(n, n, i, j, aphi(i-j));

%o a(n) = my(m = tm(2*n), s=0); forperm([1..2*n], p, s += prod(j=1, n, m[p[2*j-1], p[2*j]]); ); s/(n!*2^n); \\ _Michel Marcus_, May 02 2023

%Y Cf. A071083 (determinant of M(n)), A085510 (permanent of M(n)).

%Y Cf. A000010, A049581, A338456.

%K nonn,hard,more

%O 0,3

%A _Stefano Spezia_, Sep 30 2022

%E a(6) from _Michel Marcus_, May 02 2023

%E a(7)-a(10) from _Pontus von Brömssen_, Oct 14 2023