login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354829
Numbers k such that 2^k + 3^k + 6 is prime.
0
1, 2, 3, 4, 5, 8, 9, 15, 18, 23, 24, 33, 34, 35, 44, 63, 88, 89, 120, 220, 228, 229, 570, 1095, 1863, 2094, 2718, 3598, 4658, 6056, 8819, 9485, 11220, 23656, 28762, 35664, 36544, 39779, 46868, 50098, 58853
OFFSET
1,2
COMMENTS
a(34) > 17000.
a(36) > 30000. - Jon E. Schoenfield, Jun 14 2022
EXAMPLE
For k=1 we obtain f(1) = 2^1 + 3^1 + 6 = 11 which is a prime.
MATHEMATICA
Select[Range[1, 1000], PrimeQ[2^# + 3^# + 6] &]
PROG
(Python)
from sympy import isprime
from itertools import count, islice
def agen(): yield from (k for k in count(1) if isprime(2**k+3**k+6))
print(list(islice(agen(), 24))) # Michael S. Branicky, Jun 07 2022
CROSSREFS
Cf. A353102.
Sequence in context: A194714 A054168 A301464 * A085152 A264886 A369294
KEYWORD
nonn,more,hard
AUTHOR
Hemjyoti Nath, Jun 07 2022
EXTENSIONS
a(34) from Jon E. Schoenfield, Jun 11 2022
a(35) from Jon E. Schoenfield, Jun 13 2022
a(36)-a(38) from Michael S. Branicky, Mar 14 2023
a(39)-a(41) from Michael S. Branicky, Jun 01 2024
STATUS
approved