login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Sum_{p prime} 3*(2p-1)*log(p)/(p^3 + p^2 - 3p + 1).
0

%I #16 Jun 06 2022 02:49:14

%S 2,5,2,9,0,6,6,1,7,3,5,8,0,9,2,9,9,2,9,2,5,9,5,8,7,1,2,9,3,0,1,8,9,4,

%T 5,9,2,3,0,0,0,9,2,2,3,9,9,4,4,3,9,9,7,6,1,1,8,8,9,9,2,5,6,2,7,0,1,3,

%U 5,7,8,0,0,6,6,2,8,6,4,7,7,4,9,6,1,5,1,7,2,2,4,6,7,7,6,3,3,2,0,4,4,3,2,6,5

%N Decimal expansion of Sum_{p prime} 3*(2p-1)*log(p)/(p^3 + p^2 - 3p + 1).

%C Also logarithmic derivative of A(s,w) at (0,0), where A(s,w) = Product_{p prime} (1 - (1 - (p*(1 - p^(-1-s))^3)/(-1+p))*(1 - (p*(1 - p^(-1-w))^3)/(-1+p))), with A(0,0) = A256392.

%e 2.52906617358092992925958712930189459230009223994439976118899256270135780066...

%t Block[{$MaxExtraPrecision = 1000},

%t Do[CC = Join[{0},

%t Series[(3 (-1 + 2 p))/(1 - 3 p + p^2 + p^3) //. p -> 1/x, {x, 0,

%t t}][[3]]];

%t Print[N[-Sum[

%t CC[[k]]*(PrimeZetaP'[k] + Log[2]/2^k), {k, 1, Length[CC]}] + (

%t 3 (-1 + 2 p) Log[p])/(1 - 3 p + p^2 + p^3) //. p -> 2, 75]], {t,

%t 1000, 1500, 100}]]

%t ratfun = 3*(2*p - 1)/(p^3 + p^2 - 3*p + 1); zetas = 0; ratab = Table[konfun = Simplify[ratfun + c/(p^power - 1)] // Together; coefs = CoefficientList[Numerator[konfun], p]; sol = Solve[Last[coefs] == 0, c][[1]]; zetas = zetas + c*Zeta'[power]/Zeta[power] /. sol; ratfun = konfun /. sol, {power, 2, 20}]; Do[Print[N[Sum[Log[p]*ratfun /. p -> Prime[k], {k, 1, m}] + zetas, 120]], {m, 2000, 20000, 2000}] (* _Vaclav Kotesovec_, Jun 04 2022 *)

%Y Cf. A256392.

%K nonn,cons

%O 1,1

%A _David Nguyen_, Jun 03 2022

%E More digits from _Vaclav Kotesovec_, Jun 04 2022