login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x,y) satisfies: -y = f(-x,-A(x,y)), where f(x,y) = Sum_{n=-oo..oo} x^(n*(n+1)/2) * y^(n*(n-1)/2) is Ramanujan's theta function.
18

%I #10 Mar 28 2023 13:18:16

%S 1,1,0,3,3,1,0,9,27,30,15,3,0,22,147,340,390,246,83,12,0,51,630,2530,

%T 5070,5928,4284,1908,486,55,0,108,2295,14595,45450,83559,98910,78282,

%U 41580,14355,2937,273,0,221,7476,70737,319605,849450,1472261,1757688,1484451,891890,375442,105930,18109,1428,0,429,22302,301070,1886010,6878907,16386636,27205308,32683680,28981855,19081854,9258678,3231514,771225,113220,7752

%N G.f. A(x,y) satisfies: -y = f(-x,-A(x,y)), where f(x,y) = Sum_{n=-oo..oo} x^(n*(n+1)/2) * y^(n*(n-1)/2) is Ramanujan's theta function.

%C Unsigned version of A354649.

%C Column 1 equals A000716, with g.f. P(x)^3 where P(x) = exp( Sum_{n>=1} sigma(n)*x^n/n ) is the partition function.

%C The rightmost border equals A001764, with g.f. C(x) = 1 + x*C(x)^3.

%C T(n,1) = A000716(n), for n >= 0.

%C T(n,2) = A354655(n), for n >= 1.

%C T(n,3) = A354656(n), for n >= 1.

%C T(n,n) = A354658(n), for n >= 0.

%C T(n,n+1) = A354659(n), for n >= 0.

%C T(n,2*n) = A354660(n), for n >= 0.

%C T(n,2*n+1) = A001764(n), for n >= 0.

%C Antidiagonal sums = A268650.

%C Row sums = A268299 (with offset).

%C Sum_{k=0..2*n+1} T(n,k)*2^k = A354652(n), for n >= 0.

%C Sum_{k=0..2*n+1} T(n,k)*3^k = A354653(n), for n >= 0.

%C Sum_{k=0..2*n+1} T(n,k)*4^k = A354654(n), for n >= 0.

%C Sum_{k=0..2*n+1} T(n,k)*(-1)^k = -A354661(n), for n >= 0.

%C Sum_{k=0..2*n+1} T(n,k)*(-2)^k = -A354662(n), for n >= 0.

%C Sum_{k=0..2*n+1} T(n,k)*(-3)^k = -A354663(n), for n >= 0.

%C Sum_{k=0..2*n+1} T(n,k)*(-4)^k = -A354664(n), for n >= 0.

%C SPECIFIC VALUES.

%C (1) A(x,y) = -exp(-Pi) at x = -exp(-Pi), y = -Pi^(1/4)/gamma(3/4).

%C (2) A(x,y) = -exp(-2*Pi) at x = -exp(-2*Pi), y = -Pi^(1/4)/gamma(3/4) * (6 + 4*sqrt(2))^(1/4)/2.

%C (3) A(x,y) = -exp(-3*Pi) at x = -exp(-3*Pi), y = -Pi^(1/4)/gamma(3/4) * (27 + 18*sqrt(3))^(1/4)/3.

%C (4) A(x,y) = -exp(-4*Pi) at x = -exp(-4*Pi), y = -Pi^(1/4)/gamma(3/4) * (8^(1/4) + 2)/4.

%C (5) A(x,y) = -exp(-sqrt(3)*Pi) at x = -exp(-sqrt(3)*Pi), y = -gamma(4/3)^(3/2)*3^(13/8)/(Pi*2^(2/3)).

%H Paul D. Hanna, <a href="/A354650/b354650.txt">Table of n, a(n) for n = 0..10301</a>

%F G.f. A(x,y) = Sum_{n>=0} x^n * Sum_{k=0..2*n+1} T(n,k)*y^k satisfies:

%F (1) -y = A(-x,-f(x,y)) = Sum_{n>=0} (-x)^n * Sum_{k=0..2*n+1} (-1)^n * T(n,k) * f(x,y)^k, where f(,) is Ramanujan's theta function.

%F (2) -y = f(-x,-A(x,y)) = Sum_{n=-oo..oo} (-1)^n * x^(n*(n-1)/2) * A(x,y)^(n*(n+1)/2), where f(,) is Ramanujan's theta function.

%F (3) -y = Product_{n>=1} (1 - x^n*A(x,y)^n) * (1 - x^(n-1)*A(x,y)^n) * (1 - x^n*A(x,y)^(n-1)), by the Jacobi triple product identity.

%F (4) -y = Sum_{n>=0} (-1)^n * x^(n*(n-1)/2) * (1 - x^(2*n+1)) * A(x,y)^(n*(n+1)/2).

%F (5) -y = Sum_{n>=0} (-1)^n * A(x,y)^(n*(n-1)/2) * (1 - A(x,y)^(2*n+1)) * x^(n*(n+1)/2).

%F Formulas for terms in rows.

%F (6) T(n,1) = A000716(n), the number of partitions of n into parts of 3 kinds.

%F (7) T(n,2*n+1) = A001764(n) = binomial(3*n,n)/(2*n+1), for n >= 0.

%e G.f.: A(x,y) = (1 + y) + x*(3*y + 3*y^2 + y^3) + x^2*(9*y + 27*y^2 + 30*y^3 + 15*y^4 + 3*y^5) + x^3*(22*y + 147*y^2 + 340*y^3 + 390*y^4 + 246*y^5 + 83*y^6 + 12*y^7) + x^4*(51*y + 630*y^2 + 2530*y^3 + 5070*y^4 + 5928*y^5 + 4284*y^6 + 1908*y^7 + 486*y^8 + 55*y^9) + x^5*(108*y + 2295*y^2 + 14595*y^3 + 45450*y^4 + 83559*y^5 + 98910*y^6 + 78282*y^7 + 41580*y^8 + 14355*y^9 + 2937*y^10 + 273*y^11) + ...

%e such that A = A(x,y) satisfies:

%e (1) -y = ... + x^36*A^28 - x^28*A^21 + x^21*A^15 - x^15*A^10 + x^10*A^6 - x^6*A^3 + x^3*A - x + 1 - A + x*A^3 - x^3*A^6 + x^6*A^10 - x^10*A^15 + x^15*A^21 - x^21*A^28 + x^28*A^36 + ...

%e (2) -y = (1 - x*A)*(1 - A)*(1-x) * (1 - x^2*A^2)*(1 - x*A^2)*(1 - x^2*A) * (1 - x^3*A^3)*(1 - x^2*A^3)*(1 - x^3*A^2) * (1 - x^4*A^4)*(1 - x^3*A^4)*(1 - x^4*A^3) * (1 - x^5*A^5)*(1 - x^4*A^5)*(1 - x^5*A^4) * ...

%e (3) -y = (1-x) - (1-x^3)*A + x*(1-x^5)*A^3 - x^3*(1-x^7)*A^6 + x^6*(1-x^9)*A^10 - x^10*(1-x^11)*A^15 + x^15*(1-x^13)*A^21 - x^21*(1-x^15)*A^28 + ...

%e (4) -y = (1-A) - (1-A^3)*x + A*(1-A^5)*x^3 - A^3*(1-A^7)*x^6 + A^6*(1-A^9)*x^10 - A^10*(1-A^11)*x^15 + A^15*(1-A^13)*x^21 - A^21*(1-A^15)*x^28 + ...

%e This triangle of coefficients of x^n*y^k in g.f. A(x,y) for n >= 0, k = 0..2*n+1, begins:

%e 1, 1;

%e 0, 3, 3, 1;

%e 0, 9, 27, 30, 15, 3;

%e 0, 22, 147, 340, 390, 246, 83, 12;

%e 0, 51, 630, 2530, 5070, 5928, 4284, 1908, 486, 55;

%e 0, 108, 2295, 14595, 45450, 83559, 98910, 78282, 41580, 14355, 2937, 273;

%e 0, 221, 7476, 70737, 319605, 849450, 1472261, 1757688, 1484451, 891890, 375442, 105930, 18109, 1428;

%e 0, 429, 22302, 301070, 1886010, 6878907, 16386636, 27205308, 32683680, 28981855, 19081854, 9258678, 3231514, 771225, 113220, 7752;

%e 0, 810, 62100, 1157820, 9729720, 46977378, 147584556, 324283068, 520974180, 628884300, 579226362, 409367712, 221218179, 90115620, 26879160, 5559408, 715122, 43263; ...

%e The rightmost border equals A001764, with g.f. C(x) = 1 + x*C(x)^3.

%e Column 1 equals A000716, with g.f. P(x)^3 where P(x) = exp( Sum_{n>=1} x^n/(n*(1-x^n)) ) is the partition function.

%o (PARI) {T(n,k) = my(A=[1+y]); for(i=1,n, A = concat(A,0);

%o A[#A] = polcoeff(y + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );

%o polcoeff(A[n+1],k,y)}

%o for(n=0,12,for(k=0,2*n+1,print1(T(n,k),", "));print(""))

%Y Cf. A000716 (column 1), A354655 (column 2), A354656 (column 3).

%Y Cf. A354658 (T(n,n)), A354659 (T(n,n+1)), A354660 (T(n,2*n)), A001764 (right border).

%Y Cf. A268299 (y=1), A354652 (y=2), A354653 (y=3), A354654 (y=4).

%Y Cf. A354661 (y=-1), A354662 (y=-2), A354663 (y=-3), A354664 (y=-4).

%Y Cf. A268650 (antidiagonal sums), A354657, A354649.

%K nonn,tabf

%O 0,4

%A _Paul D. Hanna_, Jun 02 2022