login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354618
a(n) = (sum of the digits of 5^n) - (sum of the digits of 2^n).
0
0, 3, 3, 0, 6, 6, 9, 12, 12, 18, 33, 24, 9, 3, 12, 18, 33, 42, 45, 30, 30, 36, 42, 33, 45, 48, 39, 54, 42, 42, 54, 57, 48, 27, 42, 33, 45, 48, 57, 63, 69, 87, 99, 93, 93, 54, 42, 60, 72, 93, 75, 72, 51, 42, 45, 75, 111, 135, 141, 114, 117, 120, 102, 81, 78, 78
OFFSET
0,2
COMMENTS
Wu Wei Chao asked in American Mathematical Monthly for a proof that a(n) >= 0 with a(n) = 0 only if n = 0 or n = 3 (see Richard K. Guy reference).
REFERENCES
Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section F24, Some decimal digital problems, p. 398.
FORMULA
a(n) = A066001(n) - A001370(n).
EXAMPLE
a(6) = sod(5^6) - sod(2^6) = sod(15625) - sod(64) = (1+5+6+2+5) - (6+4) = 19 - 10 = 9.
MATHEMATICA
a[n_] := Subtract @@ (Plus @@ IntegerDigits[#] & /@ {5^n, 2^n}); Array[a, 100, 0] (* Amiram Eldar, Jul 09 2022 *)
PROG
(PARI) a(n) = sumdigits(5^n) - sumdigits(2^n); \\ Michel Marcus, Jul 09 2022
(Python)
def a(n): return sum(map(int, str(5**n))) - sum(map(int, str(2**n)))
print([a(n) for n in range(66)]) # Michael S. Branicky, Jul 09 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Jul 08 2022
STATUS
approved