Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jun 05 2022 08:28:48
%S 1,2,5,13,28,79,204,549,1509,4231,12072,36426,112589
%N The number of terms of A354558 that are <= 10^n.
%C The data is from De Koninck et al. (2013).
%H Jean-Marie De Koninck, Nicolas Doyon, and Florian Luca, <a href="https://www.jeanmariedekoninck.mat.ulaval.ca/fileadmin/jmdk/Documents/Publications/2013_consecutive_integers_divisible_by_the_square_of_their_largest_prime_factors.pdf">Consecutive integers divisible by the square of their largest prime factors</a>, Journal of Combinatorics and Number Theory, Vol. 5, No. 2 (2013), pp. 81-93; <a href="https://www.researchgate.net/publication/268171058_Consecutive_integers_divisible_by_the_square_of_their_largest_prime_factors">Researchgate link</a>.
%H Jean-Marie De Koninck and Matthieu Moineau, <a href="http://emis.muni.cz/journals/JIS/VOL21/DeKoninck/dek22.html">Consecutive Integers Divisible by a Power of their Largest Prime Factor</a>, J. Integer Seq., Vol. 21 (2018), Article 18.9.3.
%H Régis de la Bretèche and Sary Drappeau, <a href="https://doi.org/10.4171/jems/951">Niveau de répartition des polynômes quadratiques et crible majorant pour les entiers friables</a>, Journal of the European Mathematical Society, Vol. 22, No. 5 (2020), pp. 1577-1624; <a href="https://arxiv.org/abs/1703.03197">arXiv preprint</a>, arXiv:1703.03197 [math.NT], 2017-2019.
%e There is one term <= 10 in A354558, 8, therefore a(1) = 1.
%e There are 2 terms <= 10^2 in A354558, 8 and 49, therefore a(2) = 2.
%t q[n_] := FactorInteger[n][[-1, 2]] > 1; c[s_, n_] := Count[s, _?(# <= n &)]; m = 6; c[Select[Range[10^m], q[#] && q[# + 1] &], #] & /@ (10^Range[m])
%Y Cf. A354558.
%K nonn,more
%O 1,2
%A _Amiram Eldar_, May 30 2022
%E a(12) from _Daniel Suteu_, Jun 03 2022
%E a(13) from _Daniel Suteu_, Jun 05 2022