login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. exp( x * exp(x^3/6) ).
6

%I #19 Aug 19 2022 02:24:59

%S 1,1,1,1,5,21,61,211,1401,8065,37241,240021,1997821,13856701,94418325,

%T 874328911,8304303281,69158458881,658339599601,7454839614985,

%U 78224066633781,805961931388741,9828080719704941,124199805022959051,1466207770078872745

%N Expansion of e.g.f. exp( x * exp(x^3/6) ).

%C This sequence is different from A143567.

%H Seiichi Manyama, <a href="/A354551/b354551.txt">Table of n, a(n) for n = 0..523</a>

%F a(n) = n! * Sum_{k=0..floor(n/3)} (n - 3*k)^k/(6^k * k! * (n - 3*k)!).

%o (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*(exp(x^3/6)))))

%o (PARI) a(n) = n!*sum(k=0, n\3, (n-3*k)^k/(6^k*k!*(n-3*k)!));

%Y Cf. A000248, A354550, A354552.

%K nonn

%O 0,5

%A _Seiichi Manyama_, Aug 18 2022