login
Square array A(n, k), n, k >= 0, read by antidiagonals; the primorial base expansion of A(n, k) is obtained by adding componentwise and reducing modulo their radix the digits of the primorial base expansions of n and k.
2

%I #8 Jun 05 2022 08:33:35

%S 0,1,1,2,0,2,3,3,3,3,4,2,4,2,4,5,5,5,5,5,5,6,4,0,4,0,4,6,7,7,1,1,1,1,

%T 7,7,8,6,8,0,2,0,8,6,8,9,9,9,9,3,3,9,9,9,9,10,8,10,8,10,2,10,8,10,8,

%U 10,11,11,11,11,11,11,11,11,11,11,11,11

%N Square array A(n, k), n, k >= 0, read by antidiagonals; the primorial base expansion of A(n, k) is obtained by adding componentwise and reducing modulo their radix the digits of the primorial base expansions of n and k.

%C The nonnegative integers together with A form an abelian group; A354469 gives inverse elements.

%C Each row is a permutation of the nonnegative integers.

%H Rémy Sigrist, <a href="/A354470/a354470.png">Colored representation of the array A(n, k) for n, k < 2*3*5*7*11</a> (the hue is function of A(n, k), black pixels correspond to 0's)

%H <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>

%F A(n, k) = A(k, n).

%F A(m, A(n, k)) = A(A(m, n), k).

%F A(n, 0) = n.

%F A(n, k) = 0 iff k = A354469(n).

%F A(n, 1) = A004442(n).

%e Square array A(n, k) begins:

%e n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

%e ---+----------------------------------------------------------------

%e 0| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

%e 1| 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14

%e 2| 2 3 4 5 0 1 8 9 10 11 6 7 14 15 16 17

%e 3| 3 2 5 4 1 0 9 8 11 10 7 6 15 14 17 16

%e 4| 4 5 0 1 2 3 10 11 6 7 8 9 16 17 12 13

%e 5| 5 4 1 0 3 2 11 10 7 6 9 8 17 16 13 12

%e 6| 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

%e 7| 7 6 9 8 11 10 13 12 15 14 17 16 19 18 21 20

%e 8| 8 9 10 11 6 7 14 15 16 17 12 13 20 21 22 23

%e 9| 9 8 11 10 7 6 15 14 17 16 13 12 21 20 23 22

%e 10| 10 11 6 7 8 9 16 17 12 13 14 15 22 23 18 19

%e 11| 11 10 7 6 9 8 17 16 13 12 15 14 23 22 19 18

%e 12| 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

%e 13| 13 12 15 14 17 16 19 18 21 20 23 22 25 24 27 26

%e 14| 14 15 16 17 12 13 20 21 22 23 18 19 26 27 28 29

%e 15| 15 14 17 16 13 12 21 20 23 22 19 18 27 26 29 28

%o (PARI) A(n,k, s=i->prime(i)) = { my (v=0, f=1, r); for (i=1, oo, if (n==0 && k==0, return (v), r=s(i); v+=f*((n+k)%r); f*=r; n\=r; k\=r)) }

%Y Cf. A004442, A235168, A354438 (factorial base analog), A354469.

%K nonn,base,tabl

%O 0,4

%A _Rémy Sigrist_, Jun 02 2022