login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A354466 Numbers k such that the decimal expansion of the sum of the reciprocals of the digits of k starts with the digits of k in the same order. 1
1, 13, 145, 153, 1825, 15789, 16666, 21583, 216666, 2416666, 28428571, 265833333, 3194444444, 3333333333, 9111111111, 35333333333, 3166666666666, 3819444444444, 26666666666666, 34166666666666, 527857142857142, 3944444444444444, 6135714285714285, 615833333333333333 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
The sequence is infinite because all numbers of the form 10^(10^n-6) + 6*(10^(10^n-6)-1)/9, (n>0) are terms.
All terms are zeroless since 1/0 is undefined.
If n gives a sum < 1 then that sum is taken as 0.xyz.. but n does not start with 0, so not a term.
LINKS
Michael S. Branicky, Python program
Kevin Ryde, PARI/GP Code
EXAMPLE
28428571 is a term because 1/2 + 1/8 + 1/4 + 1/2 + 1/8 + 1/5 + 1/7 + 1/1 = 2.8428571...
825 is not a term since 1/8 + 1/2 + 1/5 = 0.825.
MATHEMATICA
Do[If[FreeQ[IntegerDigits[n], 0]&&Floor[Total[1/IntegerDigits[n]]*10^(IntegerLength[n]-IntegerLength[Floor[Total[1/IntegerDigits[n]]]])]==n&&Floor[Total[1/IntegerDigits[n]]]>0, Print[n]], {n, 1, 216666}]
PROG
(Python) See links.
(PARI) See links.
CROSSREFS
Sequence in context: A134489 A064525 A065411 * A038492 A270579 A297223
KEYWORD
nonn,base
AUTHOR
Metin Sariyar, Jun 01 2022
EXTENSIONS
a(12)-a(24) from Michael S. Branicky, Jun 03 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 23:30 EST 2023. Contains 367662 sequences. (Running on oeis4.)