%I #11 Jun 08 2022 10:18:38
%S 1,1,2,1,3,1,5,1,1,3,7,1,11,5,2,1,13,1,17,1,10,7,19,1,1,11,1,1,23,1,
%T 29,1,14,13,3,1,31,17,22,1,37,5,41,1,1,19,43,1,1,1,26,1,47,1,21,1,34,
%U 23,53,1,59,29,1,1,33,7,61,1,38,3,67,1,71,31,1,1,5,11,73,1,1,37,79,1,39,41,46,1,83,1,55,1,58
%N Denominators of Dirichlet inverse of primorial deflation fraction A319626(n) / A319627(n).
%C Equally, denominators of Dirichlet inverse of fraction n / A064989(n). See also comments in A354365.
%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F a(n) = A064989(n) / gcd(A055615(n), A064989(n)).
%o (PARI)
%o A064989(n) = { my(f = factor(n)); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
%o A354366(n) = denominator((moebius(n)*n)/A064989(n));
%Y Cf. A055615, A064989, A319626, A319627, A354360 (positions of 1's).
%Y Cf. A354365 (numerators).
%Y Cf. also A349630.
%K nonn,frac
%O 1,3
%A _Antti Karttunen_, Jun 07 2022