login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354316
Expansion of e.g.f. 1/(1 + x/3 * log(1 - 3 * x)).
2
1, 0, 2, 9, 96, 1170, 18324, 340200, 7360128, 181476288, 5024611440, 154319988240, 5206240427904, 191372822989920, 7612497915813504, 325791049256094240, 14925809593280332800, 728828735500650355200, 37786217117138333005824
OFFSET
0,3
FORMULA
a(0) = 1; a(n) = n! * Sum_{k=2..n} 3^(k-2)/(k-1) * a(n-k)/(n-k)!.
a(n) = n! * Sum_{k=0..floor(n/2)} 3^(n-2*k) * k! * |Stirling1(n-k,k)|/(n-k)!.
MATHEMATICA
With[{nn=20}, CoefficientList[Series[1/(1+x/3 Log[1-3x]), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Mar 06 2023 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x/3*log(1-3*x))))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i!*sum(j=2, i, 3^(j-2)/(j-1)*v[i-j+1]/(i-j)!)); v;
(PARI) a(n) = n!*sum(k=0, n\2, 3^(n-2*k)*k!*abs(stirling(n-k, k, 1))/(n-k)!);
CROSSREFS
Cf. A354310.
Sequence in context: A011837 A106343 A086992 * A345466 A115965 A001142
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 23 2022
STATUS
approved