OFFSET
0,3
FORMULA
a(0) = 1; a(n) = n! * Sum_{k=2..n} 3^(k-2)/(k-1) * a(n-k)/(n-k)!.
a(n) = n! * Sum_{k=0..floor(n/2)} 3^(n-2*k) * k! * |Stirling1(n-k,k)|/(n-k)!.
MATHEMATICA
With[{nn=20}, CoefficientList[Series[1/(1+x/3 Log[1-3x]), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Mar 06 2023 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x/3*log(1-3*x))))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i!*sum(j=2, i, 3^(j-2)/(j-1)*v[i-j+1]/(i-j)!)); v;
(PARI) a(n) = n!*sum(k=0, n\2, 3^(n-2*k)*k!*abs(stirling(n-k, k, 1))/(n-k)!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 23 2022
STATUS
approved