%I #10 May 23 2022 08:51:12
%S 9,7,2,7,1,3,5,8,6,9,3,6,2,4,2,3,7,1,5,1,3,0,5,5,0,2,4,3,3,4,5,3,8,0,
%T 8,2,8,4,9,5,4,7,5,8,8,6,1,9,1,0,1,3,1,8,6,8,3,9,9,3,4,7,2,8,0,2,5,9,
%U 4,7,5,7,5,2,9,6,7,4,1,1,4,1,5,6,8,7,3,6,4,6,6,6,1,9,4,3,1,2,5,5,1,0,2,8,7,1
%N Decimal expansion of Product_{k>=1} (1 - exp(-2*k*Pi/sqrt(3))).
%C Note that Prudnikov incorrectly give this product as 3^(1/4)*exp(-Pi*sqrt(3)/18), which differs from the correct result by 0.0000182...
%D A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1 (Overseas Publishers Association, Amsterdam, 1986), p. 757, section 6.2.3, incorrect formula 4.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/InfiniteProduct.html">Infinite Product</a>, formula 52.
%e 0.972713586936242371513055024334538082849547588619101318683993472802594...
%p evalf(Product(1 - exp(-2*k*Pi/sqrt(3)), k = 1..infinity), 105);
%t RealDigits[QPochhammer[E^(-2*Pi/Sqrt[3])], 10, 105][[1]]
%o (PARI) prodinf(k=1, (1 - exp(-2*k*Pi/sqrt(3))))
%Y Cf. A292828.
%K nonn,cons
%O 0,1
%A _Vaclav Kotesovec_, May 23 2022