login
A354269
Numbers b such that b^(11-1) == 1 (mod 11^2) and b^(1006003-1) == 1 (mod 1006003^2), i.e., common Wieferich bases of 11 and 1006003.
0
1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 177147, 531441, 1594323, 4782969, 14348907, 31098449, 34970654, 35236643, 43046721, 58883189, 73220005, 93295347, 102199060, 104911962, 105709929, 112028791, 112870007, 115196746, 117560414, 129140163, 144185176
OFFSET
1,2
COMMENTS
A000244 is a subsequence.
PROG
(PARI) is(n) = my(p=11, q=1006003); Mod(n, p^2)^(p-1)==1 && Mod(n, q^2)^(q-1)==1
(Python)
def ok(b): return pow(b, 10, 121)==1 and pow(b, 1006002, 1006003**2)==1
print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, May 25 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Felix Fröhlich, May 25 2022
STATUS
approved