login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A064989(sigma(sigma(sigma(A003961(n))))), where A003961 shifts the prime factorization one step towards larger primes, and A064989 shifts it back towards smaller primes.
3

%I #8 May 24 2022 16:31:42

%S 1,1,5,2,2,10,5,44,20,11,6,6,5,5,5,3,2,20,10,4,10,12,66,6,58,10,204,

%T 204,11,5,10,986,20,2,55,113,20,55,12,2,5,55,5,29,40,132,12,15,40,58,

%U 132,10,6,6,6,18,5,8,20,6,22,145,78,262,5,20,10,170,10,40,6,2486,2,40,50,12,40,12,20,6,60,5,110,20

%N a(n) = A064989(sigma(sigma(sigma(A003961(n))))), where A003961 shifts the prime factorization one step towards larger primes, and A064989 shifts it back towards smaller primes.

%C For any hypothetical odd perfect number opn that is not a multiple of 3, it holds that a(n) = A354195(n) = 2*n, where n = A064989(opn).

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%F a(n) = A064989(A066971(A003961(n))).

%o (PARI)

%o A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };

%o A064989(n) = { my(f=factor(n>>valuation(n, 2))); for(i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f); };

%o A354197(n) = A064989(sigma(sigma(sigma(A003961(n)))));

%Y Cf. A000203, A003961, A064989, A066971, A354198 [= A064989(a(A003961(n)))].

%Y Cf. also A326042, A354195.

%K nonn

%O 1,3

%A _Antti Karttunen_, May 24 2022