Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Aug 12 2022 18:59:16
%S 1,1,2,3,5,8,7,9,10,13,23,36,29,35,64,37,39,76,77,115,192,121,17,28,
%T 31,15,16,17,19,36,25,11,16,13,15,28,29,43,72,49,13,20,23,33,56,47,61,
%U 108,67,73,140,143,213,356,391,569,960,599,629,1228,1243,1857,3100,1867
%N a(1) = a(2) = 1, a(n) = (A007947(31*a(n-1)) + A007947(31*a(n-2)))/31 for n >= 3, i.e., 31*a(n) is the largest squarefree divisor of 31*a(n-1) plus the largest squarefree divisor of 31*a(n-2).
%C After the first 5 terms, the sequence values repeat periodically with a cycle length of 207. The maximum value of a(n) is 1142300, whose first occurrence appears at n = 111.
%H Michael De Vlieger, <a href="/A354184/b354184.txt">Table of n, a(n) for n = 1..2075</a>
%H Augusto Santi, <a href="https://math.stackexchange.com/questions/4452873/">Periodic sequences of integers generated by a(n+1) = rad(a(n)) + rad(a(n-1))</a>, Mathematics Stack Exchange.
%F For n >= 6, a(207 + n) = a(n).
%e 31*2 is the largest squarefree divisor of 31*a(6) = 31*8. 31*7 is the largest squarefree divisor of 31*a(7) = 31*7. So a(8) = (31*2 + 31*7)/31 = 9.
%t Nest[Append[#, (Times @@ FactorInteger[31 #[[-1]]][[All, 1]] + Times @@ FactorInteger[31 #[[-2]]][[All, 1]])/31] &, {1, 1}, 62] (* _Michael De Vlieger_, Jul 18 2022 *)
%o (Python)
%o from sympy import primefactors
%o def rad(num):
%o primes = primefactors(num)
%o value = 1
%o for p in primes:
%o value *= p
%o return value
%o a = [1, 1]
%o for n in range(2, 1000):
%o a += [(rad(31*a[n-1]) + rad(31*a[n-2])) // 31]
%o (PARI) rad(n) = factorback(factorint(n)[, 1]); \\ A007947
%o lista(nn) = my(va = vector(nn)); va[1] = 1; va[2] = 1; for (n=3, nn, va[n] = (rad(31*va[n-2]) + rad(31*va[n-1]))/31;); va; \\ _Michel Marcus_, May 21 2022
%Y Cf. A007947, A121369.
%K nonn,look
%O 1,3
%A _Augusto Santi_, May 18 2022