login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Minimum number of diagonal transversals in an orthogonal diagonal Latin square of order n.
2

%I #16 Mar 20 2023 21:06:19

%S 1,0,0,4,5,0,8,8,14

%N Minimum number of diagonal transversals in an orthogonal diagonal Latin square of order n.

%C An orthogonal diagonal Latin square is a diagonal Latin square with at least one orthogonal diagonal mate.

%C a(10) <= 60, a(11) <= 279, a(12) <= 588, a(13) <= 9610.

%C Every orthogonal diagonal Latin square is a diagonal Latin square, so A287647(n) <= a(n) <= A360220(n) <= A287648(n). - _Eduard I. Vatutin_, Mar 03 2023

%H Eduard I. Vatutin, <a href="https://vk.com/wall162891802_1709">About the spectra of numerical characteristics of orthogonal diagonal Latin squares of orders 1-11</a> (in Russian).

%H E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan and I. I. Kurochkin, <a href="http://evatutin.narod.ru/evatutin_spectra_t_dt_i_o_small_orders_thesis.pdf">On the construction of spectra of fast-computable numerical characteristics for diagonal Latin squares of small order</a>, Intellectual and Information Systems (Intellect - 2021). Tula, 2021. pp. 7-17. (in Russian)

%H Eduard I. Vatutin, <a href="/A354068/a354068.txt">Proving list (best known examples)</a>.

%H <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>.

%e One of the best orthogonal diagonal Latin squares of order n=9

%e 0 1 2 3 4 5 6 7 8

%e 1 2 3 8 6 4 7 0 5

%e 5 4 6 0 7 8 3 1 2

%e 7 3 1 5 2 6 0 8 4

%e 8 7 4 6 1 2 5 3 0

%e 3 0 5 4 8 7 1 2 6

%e 4 6 7 2 3 0 8 5 1

%e 6 5 8 1 0 3 2 4 7

%e 2 8 0 7 5 1 4 6 3

%e has orthogonal diagonal mate

%e 0 1 2 3 4 5 6 7 8

%e 2 3 8 7 5 6 4 1 0

%e 1 5 4 8 6 0 2 3 7

%e 8 7 0 6 1 3 5 4 2

%e 5 0 1 2 7 8 3 6 4

%e 4 6 7 0 3 2 8 5 1

%e 3 8 5 4 0 7 1 2 6

%e 7 4 6 5 2 1 0 8 3

%e 6 2 3 1 8 4 7 0 5

%e and 14 diagonal transversals, which is the minimal number, so a(9)=14.

%Y Cf. A287647, A287648, A345370, A349199, A360220.

%K nonn,more,hard

%O 1,4

%A _Eduard I. Vatutin_, May 16 2022