login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354002
Inverse Stirling transform of odd primes.
2
3, 2, -2, 6, -30, 192, -1440, 12240, -115916, 1209422, -13784264, 170426380, -2272355448, 32507854434, -496746974148, 8076163535824, -139211242006108, 2536169979011432, -48695473146705746, 982863502262307532, -20805668315828056010, 460926536131613987430
OFFSET
1,1
LINKS
FORMULA
E.g.f.: Sum_{k>=1} prime(k+1) * log(1 + x)^k / k!.
a(n) = Sum_{k=1..n} Stirling1(n,k) * prime(k+1).
MATHEMATICA
nmax = 22; CoefficientList[Series[Sum[Prime[k + 1] Log[1 + x]^k/k!, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
Table[Sum[StirlingS1[n, k] Prime[k + 1], {k, 1, n}], {n, 1, 22}]
PROG
(PARI) a(n) = sum(k=1, n, stirling(n, k, 1) * prime(k+1)); \\ Michel Marcus, May 13 2022
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, May 13 2022
STATUS
approved