Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #14 May 16 2022 15:08:15
%S 1,1,1,1,1,6,1,1,13,47,1,1,45,259,3376,1,1,122,1189,29683,475962,1,1,
%T 373,5877,311894,9250945,355724934,1,1,1073,28167,3015423,164776003,
%U 12126673297,777719132265,1,1,3182,136723,30295051,3051272172,436744432876,53090133270415,6953251175836902
%N Triangle read by rows: T(k,n) (k >= 0, n = 0..k) = number of tilings of a k X n rectangle using 2 X 2 and 1 X 1 tiles and right trominoes.
%C For tiling algorithm, see A351322.
%C Reading the sequence {T(k,n)} for n>k, use T(n,k) instead of T(k,n).
%C T(1,n) = A000012(n) = constant 1,
%C T(2,n) = A353964(n), T(3,n) = A353965(n).
%e Triangle begins
%e k\n 0 1 2 3 4 5 6
%e ------------------------------------------
%e 0: 1
%e 1: 1 1
%e 2: 1 1 6
%e 3: 1 1 13 47
%e 4: 1 1 45 259 3376
%e 5: 1 1 122 1189 29683 475962
%e 6: 1 1 373 5877 311894 9250945 355724934
%o (Maxima) See A352589.
%Y Cf. A000012, A351322, A352589, A353964, A353965.
%Y T(n,n) gives A354067.
%K nonn,tabl
%O 0,6
%A _Gerhard Kirchner_, May 13 2022