Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Sep 04 2022 01:17:26
%S 0,2,3,2,5,11,7,2,3,17,11,11,13,23,8,2,17,29,19,17,10,35,23,11,5,41,
%T 30,23,29,56,31,2,14,53,12,29,37,59,16,17,41,74,43,35,53,71,47,11,7,
%U 67,20,41,53,110,16,23,22,89,59,56,61,95,73,2,18,110,67,53,26,108,71,29
%N Sum of the divisors of n whose arithmetic derivative is odd.
%F a(n) = Sum_{d|n} d * ((d') mod 2).
%p A353956 := proc(n)
%p add(d*modp(A003415(d),2), d=numtheory[divisors](n)) ;
%p end proc:
%p seq(A353956(n),n=1..80) ; # _R. J. Mathar_, Jul 05 2022
%t d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); a[n_] := DivisorSum[n, # &, OddQ[d[#]] &]; Array[a, 100] (* _Amiram Eldar_, May 12 2022 *)
%o (PARI) ad(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
%o a(n) = sumdiv(n, d, if (ad(d) %2, d)); \\ _Michel Marcus_, May 12 2022
%Y Cf. A000005 (tau), A003415 (n'), A353235.
%K nonn
%O 1,2
%A _Wesley Ivan Hurt_, May 12 2022