Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 May 12 2022 15:19:10
%S 1,1,1,1,2,1,1,8,5,1,1,32,41,14,1,1,128,365,200,41,1,1,512,3281,3104,
%T 977,122,1,1,2048,29525,49280,23801,4808,365,1,1,8192,265721,786944,
%U 589217,174752,23801,1094,1,1,32768,2391485,12584960,14677961,6297728,1257125,118280,3281,1
%N Array T(n,k) = beta(2*n, -k), where beta(i,j) are the polycotangent numbers, for n,k >= 0, read by ascending antidiagonals.
%H Masanobu Kaneko, Maneka Pallewatta, and Hirofumi Tsumura, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Tsumura/tsumura3.html">On Polycosecant Numbers</a>, J. Integer Seq. 23 (2020), no. 6, 17 pp.
%H Kyosuke Nishibiro, <a href="https://arxiv.org/abs/2205.05247">On some properties of polycosecant numbers and polycotangent numbers</a>, arXiv:2205.05247 [math.NT], 2022.
%e The array begins:
%e 1 1 1 1 1 ...
%e 1 2 5 14 41 ...
%e 1 8 41 200 977 ...
%e 1 32 365 3104 23801 ...
%e 1 128 3281 49280 589217 ...
%o (PARI) beta(n,k) = if (!(n%2), n>>=1; sum(j=0, 2*n, sum(i=0, j\2, (-1)^j*j!*binomial(j+1,2*i+1)*((j+1)*(j+2)*stirling(2*n,j+2,2)/2+stirling(2*n+1,j+1,2))/(2^j*(2*i+1)^k))));
%o matrix(5,5,n, k, n--; k--; beta(2*n,-k))
%K nonn,tabl
%O 0,5
%A _Michel Marcus_, May 12 2022