login
A353927
Product_{n>=1} (1 + x^n)^a(n) = 1 + Sum_{n>=1} mu(n)*x^n, where mu = A008683.
1
1, -1, 0, -1, -1, 2, -4, 4, -7, 8, -10, 9, -5, -6, 19, -40, 70, -110, 138, -158, 154, -93, -70, 355, -797, 1408, -2160, 2925, -3479, 3399, -2080, -1299, 7593, -17673, 32014, -49928, 68683, -82847, 82807, -53620, -24942, 176293, -422887, 777264, -1226688, 1710686, -2093347
OFFSET
1,6
COMMENTS
Inverse weigh transform of the Moebius function (A008683).
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[a[i], j] b[n - i j, i - 1], {j, 0, n/i}]]]; a[n_] := a[n] = MoebiusMu[n] - b[n, n - 1]; Table[a[n], {n, 1, 47}]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, May 11 2022
STATUS
approved