login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Product_{n>=1} (1 + a(n)*x^n) = 1 + Sum_{n>=1} tau(n)*x^n, where tau = A000005.
4

%I #5 May 11 2022 22:46:19

%S 1,2,0,3,-1,-1,-1,9,1,-7,0,4,-1,-19,2,94,-2,-57,2,81,-4,-186,3,226,3,

%T -632,-2,1040,1,-2060,-15,10975,17,-7720,-1,13980,9,-27595,-18,50432,

%U -10,-97582,24,191827,-17,-364695,27,580609,-37,-1338741,45,2658068,-11,-4909146,-98

%N Product_{n>=1} (1 + a(n)*x^n) = 1 + Sum_{n>=1} tau(n)*x^n, where tau = A000005.

%F Product_{n>=1} (1 + a(n)*x^n) = 1 + Sum_{n>=1} x^n / (1 - x^n).

%t A[m_, n_] := A[m, n] = Which[m == 1, DivisorSigma[0, n], m > n >= 1, 0, True, A[m - 1, n] - A[m - 1, m - 1] A[m, n - m + 1]]; a[n_] := A[n, n]; a /@ Range[1, 55]

%Y Cf. A000005, A320779, A328775, A353924, A353925, A353926.

%K sign

%O 1,2

%A _Ilya Gutkovskiy_, May 11 2022