login
A353879
Number of tilings of a 4 X n rectangle using right trominoes, dominoes and 1 X 1 tiles.
2
1, 5, 189, 3633, 83374, 1817897, 40220893, 886130549, 19546906987, 431024540644, 9505433227293, 209617856008535, 4622624792880217, 101940750143038657, 2248057208102711472, 49575464007447758483, 1093267021618939507743, 24109360928450426884813, 531673668551361276666101
OFFSET
0,2
COMMENTS
For tiling algorithm see A351322.
FORMULA
G.f.: (1 - 9*x - 64*x^2 + 109*x^3 + 39*x^4 + 41*x^5 + 12*x^6 - 7*x^7 - 2*x^8) / (1 - 14*x - 183*x^2 + 37*x^3 + 1929*x^4 - 2419*x^5 + 212*x^6 + 333*x^7 - 25*x^8-15*x^9).
a(n) = 14*a(n-1) + 183*a(n-2) - 37*a(n-3) - 1929*a(n-4) + 2419*a(n-5) - 212*a(n-6) - 333*a(n-7) + 25*a(n-8) + 15*a(n-9).
EXAMPLE
a(2)=189.
The number of tilings (mirroring included) using r trominoes
___ ___ ___ ___
r=1: | _| | _| | |_| |_2_| r=0: 71 = A030186(4)
|_|_| |_| | |___| |_ |
| 7 | |3|_| | 7 | |3|_|
|___| |___| |___| |___|
4*7 + 4*3 + 4*7 + 4*6 = 92
___ ___ ___ ___ ___ ___ ___
r=2: | _| | _| | _| | _| | _| | |_| | |_|
|_| | |_|2| |_|_| |_|_| |_|_| |___| |___|
|___| | |_| | _|_|_| | |_ | |_ | | _|
|_2_| |___| |_|_| |___| |_|_| |_|_| |_|_|
4*2 + 2*2 + 4*1 + 2*1 + 4*1 + 2*1 + 2*1 = 26
Result: a(2) = 71+92+26 = 189.
Legend:
___ ___ ___
|_2_| stands for |___| or |_|_|
_ _ _ _
_|3| _| | _|_| _|_|
|___| stands for |_|_| or |___| or |_|_|
___ ___ ___ ___ ___ ___ ___ ___
| 7 | |___| |_|_| |___| | | | |_| | | |_| |_|_|
|___| stands for |___|,|___|,|_|_|,|_|_|,|_|_|,|_|_| or |_|_|
PROG
(Maxima) See A352589.
KEYWORD
nonn,easy
AUTHOR
Gerhard Kirchner, May 09 2022
STATUS
approved